References
- Armati, P.J., and Mathey, E.K. (2014). Clinical implications of Schwann cell biology. J. Peripher. Nerv. Syst. 19, 14-23. https://doi.org/10.1111/jns5.12057
- Berrocal, Y.A., Almeida, V.W., Gupta, R., and Levi, A.D. (2013). Transplantation of Schwann cells in a collagen tube for the repair of large, segmental peripheral nerve defects in rats. J. Neurosurg. 119, 720-732. https://doi.org/10.3171/2013.4.JNS121189
- Betters, E., Liu, Y., Kjaeldgaard, A., Sundstrom, E., and Garcia-Castro, M.I. (2010). Analysis of early human neural crest development. Dev. Biol. 344, 578-592. https://doi.org/10.1016/j.ydbio.2010.05.012
- Chen, P., Cescon, M., and Bonaldo, P. (2014). The role of collagens in peripheral nerve myelination and function. Mol. Neurobiol. 2014, 1-10.
- Christopherson, G.T., Song, H., and Mao, H.Q. (2009). The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30, 556-564. https://doi.org/10.1016/j.biomaterials.2008.10.004
- Corbeil, D., Roper, K., Hellwig, A., Tavian, M., Miraglia, S., Watt, S.M., Simmons, P.J., Peault, B., Buck, D.W., and Huttner, W.B. (2000). The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J. Biol. Chem. 275, 5512-5520. https://doi.org/10.1074/jbc.275.8.5512
- De Santis, G., Lennon, A.B., Boschetti, F., Verhegghe, B., Verdonck, P., and Prendergast, P.J. (2011). How can cells sense the elasticity of a substrate? An analysis using a cell tensegrity model. Eur. Cell. Mater. 22, 202-213. https://doi.org/10.22203/eCM.v022a16
- Enomoto, M., Bunge, M.B., and Tsoulfas, P. (2013). A multifunctional neurotrophin with reduced affinity to p75 enhances transplanted Schwann cell survival and axon growth after spinal cord injury. Exp. Neurol. 248C, 170-182.
- Fowlkes, V., Wilson, C.G., Carver, W., and Goldsmith, E.C. (2013). Mechanical loading promotes mast cell degranulation via RGDintegrin dependent pathways. J. Biomech. 46, 788-795. https://doi.org/10.1016/j.jbiomech.2012.11.014
- Gasparotto, V.P., Landim-Alvarenga, F.C., Oliveira, A.L., Simoes, G.F., Lima-Neto, J.F., Barraviera, B., and Ferreira, R.S., Jr. (2014). A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells. Stem Cell Res. Ther. 5, 78 https://doi.org/10.1186/scrt467
- Hadjipanayi, E., Mudera, V., and Brown, R.A. (2009). Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness. J. Tissue Eng. Regen. Med. 3, 77-84. https://doi.org/10.1002/term.136
- Hall, B.K. (2008). The neural crest and neural crest cells: discovery and significance for theories of embryonic organization. J. Biosci. 33, 781-793. https://doi.org/10.1007/s12038-008-0098-4
- Hauser, S., Widera, D., Qunneis, F., Muller, J., Zander, C., Greiner, J., Strauss, C., Luningschror, P., Heimann, P., Schwarze, H., et al. (2012). Isolation of novel multipotent neural crest-derived stem cells from adult human inferior turbinate. Stem Cells Dev. 21, 742-756. https://doi.org/10.1089/scd.2011.0419
- Jacob, C., Lotscher, P., Engler, S., Baggiolini, A., Varum Tavares, S., Brugger, V., John, N., Buchmann-Moller, S., Snider, P.L., Conway, S.J., et al. (2014). HDAC1 and HDAC2 control the specification of neural crest cells into peripheral glia. J. Neurosci. 34, 6112-6122. https://doi.org/10.1523/JNEUROSCI.5212-13.2014
- Kang, B.J., Kim, H., Lee, S.K., Kim, J., Shen, Y., Jung, S., Kang, K.S., Im, S.G., Lee, S.Y., Choi, M., et al. (2014). Umbilical-cordblood-derived mesenchymal stem cells seeded onto fibronectinimmobilized polycaprolactone nanofiber improve cardiac function. Acta Biomater. 10, 3007-3017 https://doi.org/10.1016/j.actbio.2014.03.013
- Kondo, Y., Wenger, D.A., Gallo, V., and Duncan, I.D. (2005). Galactocerebrosidase-deficient oligodendrocytes maintain stable central myelin by exogenous replacement of the missing enzyme in mice. Proc. Natl. Acad. Sci. USA 102, 18670-18675. https://doi.org/10.1073/pnas.0506473102
- Lin, Y., Yan, Z., Liu, L., Qiao, J., Jing, W., Wu, L., Chen, X., Li, Z., Tang, W., Zheng, X., et al. (2006). Proliferation and pluripotency potential of ectomesenchymal cells derived from first branchial arch. Cell Prolif. 39, 79-92. https://doi.org/10.1111/j.1365-2184.2006.00374.x
- Linnes, M.P., Ratner, B.D., and Giachelli, C.M. (2007). A fibrinogenbased precision microporous scaffold for tissue engineering. Biomaterials 28, 5298-5306. https://doi.org/10.1016/j.biomaterials.2007.08.020
- Linsley, C., Wu, B., and Tawil, B. (2013). The effect of fibrinogen, collagen type I, and fibronectin on mesenchymal stem cell growth and differentiation into osteoblasts. Tissue Eng. Part A 19, 1416-1423. https://doi.org/10.1089/ten.tea.2012.0523
- Liu, J., Chen, Q., Zhang, Z., Zheng, Y., Sun, X., Cao, X., Gong, A., Cui, Y., He, Q., and Jiang, P. (2013). Fibrin scaffolds containing ectomesenchymal stem cells enhance behavioral and histological improvement in a rat model of spinal cord injury. Cells Tissues Organs 198, 35-46. https://doi.org/10.1159/000351665
- Lu, P., Wang, Y., Graham, L., McHale, K., Gao, M., Wu, D., Brock, J., Blesch, A., Rosenzweig, E.S., Havton, L.A., et al. (2012). Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264-1273. https://doi.org/10.1016/j.cell.2012.08.020
- Lu, D., Luo, C., Zhang, C., Li, Z., and Long, M. (2014). Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography. Biomaterials 35, 3945-3955. https://doi.org/10.1016/j.biomaterials.2014.01.066
- Lutz, D., Loers, G., Kleene, R., Oezen, I., Kataria, H., Katagihallimath, N., Braren, I., Harauz, G., and Schachner, M. (2014). Myelin basic protein cleaves cell adhesion molecule L1 and promotes neuritogenesis and cell survival. J. Biol. Chem. 289, 13503-13518 https://doi.org/10.1074/jbc.M113.530238
- McKee, K.K., Yang, D.H., Patel, R., Chen, Z.L., Strickland, S., Takagi, J., Sekiguchi, K., and Yurchenco, P.D. (2012). Schwann cell myelination requires integration of laminin activities. J. Cell Sci. 125, 4609-4619 https://doi.org/10.1242/jcs.107995
- Natale, C.F., Ventre, M., and Netti, P.A. (2014). Tuning the materialcytoskeleton crosstalk via nanoconfinement of focal adhesions. Biomaterials 35, 2743-2751. https://doi.org/10.1016/j.biomaterials.2013.12.023
- Ness, J.K., Snyder, K.M., and Tapinos, N. (2013). Lck tyrosine kinase mediates beta1-integrin signalling to regulate Schwann cell migration and myelination. Nat. Commun. 4, 1912. https://doi.org/10.1038/ncomms2928
- Nie, X., Xing, Y., Deng, M., Gang, L., Liu, R., Zhang, Y., and Wen, X. (2014). Ecto-mesenchymal stem cells from facial process: potential for muscle regeneration. Cell Biochem. Biophys. 70, 615-622. https://doi.org/10.1007/s12013-014-9964-x
- Oh, S., Brammer, K.S., Li, Y.S., Teng, D., Engler, A.J., Chien, S., and Jin, S. (2009). Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA 106, 2130-2135. https://doi.org/10.1073/pnas.0813200106
- Radtke, C., Sasaki, M., Lankford, K.L., Gallo, V., and Kocsis, J.D. (2011). CNPase expression in olfactory ensheathing cells. J. Biomed. Biotechnol. 2011, 608496.
- Richardson, G.D., Robson, C.N., Lang, S.H., Neal, D.E., Maitland, N.J., and Collins, A.T. (2004). CD133, a novel marker for human prostatic epithelial stem cells. J. Cell Sci. 117, 3539-3545. https://doi.org/10.1242/jcs.01222
- Riopel, M., Stuart, W., and Wang, R. (2013). Fibrin improves beta (INS-1) cell function, proliferation and survival through integrin v3. Acta Biomater. 9, 8140-8148 https://doi.org/10.1016/j.actbio.2013.05.035
- Rutten, M.J., Janes, M.A., Chang, I.R., Gregory, C.R., and Gregory, K.W. (2012). Development of a functional schwann cell phenotype from autologous porcine bone marrow mononuclear cells for nerve repair. Stem Cells Int. 2012, 738484.
- Schurmann, M., Wolff, A., Widera, D., Hauser, S., Heimann, P., Hutten, A., Kaltschmidt, C., and Kaltschmidt, B. (2014). Interaction of adult human neural crest-derived stem cells with a nanoporous titanium surface is sufficient to induce their osteogenic differentiation. Stem Cell Res. 13, 98-110. https://doi.org/10.1016/j.scr.2014.04.017
- Sharp, K.G., Yee, K.M., and Steward, O. (2014). A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury. Exp. Neurol. 257, 186-204. https://doi.org/10.1016/j.expneurol.2014.04.008
- Sullivan, A.M., and Toulouse, A. (2011). Neurotrophic factors for the treatment of Parkinson's disease. Cytokine Growth Factor Rev. 22, 157-165. https://doi.org/10.1016/j.cytogfr.2011.05.001
- Tian, X., Wang, S., Zhang, Z., and Lv, D. (2012). Rat bone marrowderived Schwann-like cells differentiated by the optimal inducers combination on microfluidic chip and their functional performance. PLoS One 7, e42804. https://doi.org/10.1371/journal.pone.0042804
- Wang, X., and Xu, X.M. (2014). Long-term survival, axonal growthpromotion, and myelination of Schwann cells grafted into contused spinal cord in adult rats. Exp. Neurol. 261, 308-319 https://doi.org/10.1016/j.expneurol.2014.05.022
- Wei, Y., Gong, K., Zheng, Z., Liu, L., Wang, A., Zhang, L., Ao, Q., Gong, Y., and Zhang, X. (2010). Schwann-like cell differentiation of rat adipose-derived stem cells by indirect co-culture with Schwann cells in vitro. Cell Prolif. 43, 606-616. https://doi.org/10.1111/j.1365-2184.2010.00710.x
- Weis, S., Lee, T.T., Del Campo, A., and Garcia, A.J. (2013). Dynamic cell-adhesive microenvironments and their effect on myogenic differentiation. Acta. Biomater. 9, 8059-8066. https://doi.org/10.1016/j.actbio.2013.06.019
- Yan, Z., Lin, Y., Jiao, X., Li, Z., Wu, L., Jing, W., Qiao, J., Liu, L., Tang, W., Zheng, X., et al. (2006). Characterization of ectomesenchymal cells isolated from the first branchial arch during multilineage differentiation. Cells Tissues Organs 183, 123-132. https://doi.org/10.1159/000095986
- Yazdani, S.O., Hafizi, M., Zali, A.R., Atashi, A., Ashrafi, F., Seddighi, A.S., and Soleimani, M. (2013). Safety and possible outcome assessment of autologous Schwann cell and bone marrow mesenchymal stromal cell co-transplantation for treatment of patients with chronic spinal cord injury. Cytotherapy 15, 782-791. https://doi.org/10.1016/j.jcyt.2013.03.012
- Zhang, J., Shi, Q., Yang, P., Xu, X., Chen, X., Qi, C., Zhang, J., Lu, H., Zhao, B., Zheng, P., et al. (2012). Neuroprotection of neurotrophin-3 against focal cerebral ischemia/reperfusion injury is regulated by hypoxia-responsive element in rats. Neuroscience 222, 1-9 https://doi.org/10.1016/j.neuroscience.2012.07.023
- Zhu, T., Tang, Q., Gao, H., Shen, Y., Chen, L., and Zhu, J. (2014). Current status of cell-mediated regenerative therapies for human spinal cord injury. Neurosci. Bull. 30, 671-682. https://doi.org/10.1007/s12264-013-1438-4
Cited by
- Nasal Polyp-Derived Mesenchymal Stromal Cells Exhibit Lack of Immune-Associated Molecules and High Levels of Stem/Progenitor Cells Markers vol.8, 2017, https://doi.org/10.3389/fimmu.2017.00039
- Induction of Angiogenesis by Matrigel Coating of VEGF-Loaded PEG/PCL-Based Hydrogel Scaffolds for hBMSC Transplantation vol.38, pp.7, 2015, https://doi.org/10.14348/molcells.2015.0142
- Effect of Laminin on Neurotrophic Factors Expression in Schwann-Like Cells Induced from Human Adipose-Derived Stem Cells In Vitro vol.60, pp.4, 2015, https://doi.org/10.1007/s12031-016-0808-6
- Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration vol.7, pp.14, 2015, https://doi.org/10.1002/adhm.201701046
- A Milled Microdevice to Advance Glia-Mediated Therapies in the Adult Nervous System vol.10, pp.8, 2015, https://doi.org/10.3390/mi10080513