DOI QR코드

DOI QR Code

A Design Optimization of Asymmetric Air-gap Structure for Small 3-phase Permanent Magnet SPM BLDC Motor

  • Kam, Seung-Han (Department of Electrical Engineering, Kyungnam University) ;
  • Jung, Tae-Uk (Department of Electrical Engineering, Kyungnam University)
  • Received : 2015.02.03
  • Accepted : 2015.03.19
  • Published : 2015.03.31

Abstract

As many researchers are relentlessly trying to improve the power generation schemes from the power grid, to meet the constantly increasing electricity demand. In this paper, the results of a finite element analysis are carried out to study on a design optimization of an asymmetric air-gap structure in 3-phase Permanent Magnet Brushless DC Motors. To achieve a high efficiency for a 3-phase PM BLDC motor, the asymmetric air-gap structure is proposed considering the rotation direction of a motor. Generally, a single-phase BLDC motor is applied asymmetric air-gap structure for starting. This is because the asymmetric air-gap structure causes reluctance variation so the motor can utilize reluctance torque toward a rotation direction. In this paper, the asymmetric air-gap is applied to 3-phase BLDC SPM motor so it utilizes reluctance torque with alignment torque. A proposed model is designed by 2-D FE analysis and the results are verified by experimental test.

Keywords

References

  1. G. Y. Sizov, D. M. Lionel, and N. O. A. Demerdash, IEEE ECCE Con. (2011).
  2. T. Okada, Mitsubishi Electr. AD 120 (2007).
  3. A. Consolli, G. Scelba, and M. Caccioti, IEEE Trans. Ind. Electron. 60, 9 (2013).
  4. F. Lin, J. Huang, and Y. Hung, IEEE Trans. Power Electron. 25, 10 (2010).
  5. J. Estima and A. J. Marques, IEEE Trans. Ind. Electron. 60, 8 (2013).
  6. G. Foo, X. Zhang, and G. M. Vilamuthgumwa, IEEE Trans. Ind. Electron. 60, 8 (2013).
  7. F. Parasiliti and F. Rinaldi, IEEE Trans. Ind. Electron. 59, 6, (2012). https://doi.org/10.1109/TIE.2011.2146216
  8. M. Pacas, IEEE Magazine Ind. Electron. 5, 2 (2011).
  9. K. Xu, B. Panda, and L. Lam, IEEE Trans. Ind. Electron. 51, 3 (2004). https://doi.org/10.1109/TED.2004.823518
  10. K. Gulez, A. Adam, and H. Pastazi, IEEE Trans. Ind. Electron. 55, 1 (2008). https://doi.org/10.1109/TED.2007.914131
  11. J. Shao, IEEE Trans. Ind. Applic. 42, 5 (2006).
  12. K. H. Park, T. S. Kim, S. C. Ahn, and D. S. Hyun, IEEE Conf. 4, 1677 (2003).
  13. R. Saxena, Y. Pahariya, and A. Tiwary, IEEE ICCSN, IEEE, Singapore (2010) pp 583-587.
  14. D. Hanselman, Brushless Permanent Magnet Motor Design 2nd, Magna Physics Pub., Lebanon (2006).

Cited by

  1. Effect of Geometrical Parameters on Optimal Design of Synchronous Reluctance Motor vol.21, pp.4, 2016, https://doi.org/10.4283/JMAG.2016.21.4.544