Position and Speed Control of the BLDC Motor based on the Back-stepping(Gain design)

Seung Lee* · Yong-Ho Jeon** · Whang Cho***

ABSTRACT

In this paper, we propose a design method for the position and speed controller, current control of a Brushless Direct Current (BLDC) motor using back-stepping design techniques. Further, to stabilize the whole system, and proposes a method for setting the appropriate gain control to improve the tracking performance. By applying the proposed controller to 120W BLDC motors were tested for the ability to follow the position, velocity and current reference. Since the simulation results of the steady state error is within 1%, we were able to show the usefulness of the tracking performance of the proposed controller.

Keywords

Brushless Direct Current Motor, Back-Stepping Control, Speed Control, Position Control, Root Locus

Ⅰ. 서 론

일반적인 DC 전동기는 내부 코일에 부착된 회전자의 고정된 브러쉬의 기계적인 접촉을 통해 전류를 공급하는 구조이다. 이는 전원 노이즈 발생의 원인이 되고 소음과 접점의 교체 등의 단점이 존재한다. 이에 반하여 BLDC 전동기는 회전자의 영구자석 구조로 회전자의 위치에 따른 고정자 코일에 전류를 공급해 주어 회전력을 얻는 구조로 DC 전동기의 단점을 개선한 것이다[1-4].

BLDC 전동기의 운전은 회전자의 위치감지 센서로부터 얻어진 신호에 동기화하여 삼상 고정자에 호르
게 하는 전류를 조절하는데 이는 삼상 인버터에 구성된 스위칭 소자들 이용하여 조작한다. 전동기의 고정자가 Y 결선된 삼상 중 항상 두상에 전류를 흐르도록 인버터를 조작하는 삼상 2여자 방식을 많이 사용한다. 이 방식은 영구자석의 회전으로 발생되는 역기 전압의 파형이 사다리꼴인 경우에 주로 사용되며, 삼상전동기와 비슷한 동작특징을 가진다[1-4].

본 논문은 BLDC 전동기의 정밀한 위치 및 속도 제어를 위하여 백스텝핑 제어기를 구성한다[4-9]. 제안된 제어기는 위치 및 속도 제어기와 전류제어기로 구성되는데, 전류제어기는 삼상 2여자방식에 대해 모델된 것을 바탕으로 설계한 것이다. 그에 따라 전압형 인버터는 상단 스위치 및 하단 스위치가 동시에 움직이는 양단스위치 구동방식을 사용한다.

2장에서는 백스텝핑 제어기법으로 설계된 제어기에 대한 제어 이득의 설정을 위해, 먼저 위치와 속도 제어기에 대한 오차의 상태방정식을 유도하고 설정 가능한 제어이득의 영역을 구한다. 이를 바탕으로 3장에서는 전류제어기를 구성하여 전원 시스템에 대한 오차방정식을 유도, 근의 궤적도(Root Locus)를 사용하여 전류제어이득을 얻는다. 얻어진 결과를 바탕으로 120W급의 BLDC 전동기에 대한 시뮬레이션으로 제안된 설계가 유효함을 보였다.

II. 위치 및 속도 추종기 설계

BLDC 전동기의 기계방정식은 다음의 식 (1)에서
\[
\dot{\theta}_r = \omega_r
\]
(1)
\[
\dot{w}_r = \frac{1}{J_m} \tau_e - \frac{B_m}{J_m} \omega_r - \frac{1}{J_m} \tau_j
\]
(2)
여기서, \(\dot{\theta}_r, \omega_r, w_r \)은 회전자의 기계각도 및 각속도, \(\tau_e \)는 전자기적으로 발생되는 토크, \(\tau_j \)는 부하토크, \(J_m \)은 전동기의 회전자의 관성모멘트, \(B_m \)은 전동기 회전자의 점성 마찰계수이다.

2.1 위치제어기

 먼저, 위치 제어기의 방정식으로 부터 시작한다. 위치의
\[
e_\theta = \theta_{ref} - \dot{\theta}_r
\]
(3)
\[
e_\omega = \alpha_1 + \dot{\omega}_r - \omega_r
\]
(4)
식 (3)의 \(\theta_{ref} \)와 식 (4)의 \(\omega_{ref} \)는 위치 및 속도 추종을 위한 기준 각도 및 각속도이다. 식 (3)으로 정파 함수를 구성하면 다음 식 (5)와 같다.

\[
V_1 = \frac{1}{2} e_\theta^2
\]
(5)
\[
\dot{V}_1 = e_\theta \dot{e}_\theta = e_\theta (\dot{\theta}_{ref} - \dot{\theta}_r)
\]
(6)
\[
\alpha(\dot{\theta}_r) = k_\theta e_\theta + \dot{\theta}_{ref} = \omega_{ref}
\]
(7)
\[
\dot{V}_1 = e_\theta (\dot{\theta}_{ref} - \alpha(\dot{\theta}_r)) + e_\omega
\]
(8)
\[
= k_\theta e_\theta^2 + e_\omega
\]
\[
= - k_\theta e_\theta^2 + e_\omega
\]
\[
\dot{V}_2 = V_1 + \frac{1}{2} e_\omega^2
\]
(9)
\[
\dot{V}_2 = \dot{V}_1 + e_\omega \dot{e}_\omega
\]
(10)
\[
\dot{\omega}_r = \omega_{ref} - \frac{\dot{\theta}_r}{\omega_r}
\]
(11)
\[
= \omega_{ref} - \frac{1}{J_m} (\tau_e - B_m \omega_r - \tau_j)
\]
식 (11)을 이용하여 식 (10)이 음이 되도록 하는 제어입력을 \(\alpha(\tau_e) \)라 하면 다음 식 (12)와 같다.
\[
\alpha(\tau_e) = B_m \omega_r + \tau_f + J_m (\omega_{ref} + k_w e_w + e_o)
\]
식 (12)와 제어입력 \(\tau_e \)의 오차를 정의하면 다음의 식 (13)과 같다.
\[
e_r = \alpha(\tau_e) - \tau_e
\]
식 (12)와 식 (13)을 이용하여 식 (11)을 정리하면 다음의 식 (14)와 같다.
\[
e_w = -k_w e_w + e_o + \frac{1}{J_m} e_r
\]
따라서 식 (14)를 이용하여 식 (10)을 정리하면 다음 식 (15)와 같다.
\[
\dot{v}_2 = v_1 + e_w \left(-k_w e_w + e_o + \frac{1}{J_m} e_r \right)
\]
식 (4)와 식 (14)를 이용하여 가중치에 관한 미분방정식은 다음의 식 (16)과 같이 정리된다.
\[
\frac{d}{dt} \begin{bmatrix} e_o \\ e_w \end{bmatrix} = \begin{bmatrix} -k_o & 1 \\ -1 - k_w & \end{bmatrix} \begin{bmatrix} e_o \\ e_w \end{bmatrix} + \frac{1}{J_m} \begin{bmatrix} 0 \\ e_r \end{bmatrix}
\]
식 (16)을 블록다이어그램으로 표현하면 다음 그림 1과 같다.

![그림 1. 위치 및 속도 오차 폐루프 시스템](image)

Fig. 1 The closed loop system of the position and speed error state

2.3 속도 및 위치 제어이득의 설정
전류 제어기 설계에 앞서, 식 (15)의 평가함수를 안정할 수 있도록 이득 \(k_o, k_w \)가 양의 값을 갖도록 설정하는 것이다.

오차의 상태방정식 식 (16)의 특성방정식은 다음의 식 (17) 같다.
\[
\Delta_s = s^2 + (k_o + k_w)s + (k_0k_w + 1) = 0
\]
식 (17)의 근이 \(s = -\zeta \omega_n \pm \sqrt{(\zeta^2 - 1)\omega_n^2} \) 라 할 때, \(k_o, k_w \)는 다음의 식 (18)에서 식 (19)와 같다.
\[
k_o = \zeta \omega_n \pm \sqrt{(\zeta^2 - 1)\omega_n^2 + 1}
k_w = \zeta \omega_n \mp \sqrt{(\zeta^2 - 1)\omega_n^2 + 1}
\]
식 (18)에서 식(19)는 양의 값을 가지며, 실수의 값은 가로로 다음의 식 (20)에서 식 (21)의 영역에서 설정 할 수 있다.
\[
\omega_n > 1
\]
\[
\zeta > \sqrt{1 - \omega_n^{-2}}
\]
위 영역에서 설정된 값을 바탕으로 식 (18)과 식 (19)의 이득을 설정하면 위치 및 속도제어기 근본 적인 안정성을 알 수 있다.

III. 전류 제어기 설계
BLDC 전동기는 고정자 코일이 삼상 Y결선된 구조이며, 영구자석의 회전으로 발생하는 역기전압의 파형이 이상적인 사다리꼴 모양으로 가정한다. 전동기의 전기적인 등가 회로는 다음 식 (22)와 같다.
\[
i_x = -\frac{R_s}{L_s} i_x - \frac{1}{L_s} E_x + \frac{1}{L_s} U_x x = a_i b_c e
\]
\(U_x \)는 각 상의 입력전압, \(i_x \)는 각 상의 전류, \(E_x \)는 각 상의 역기전압, \(R_s \)는 고정자의 상 저항, \(L_s \)는 각 상의 인덕턴스이다.
삼상 중 두상에만 전류를 흐르게 하고 나머지 한상은 개방한 상태를 유지하도록 인버터 구동방법 선택하면 전기적 발생토크 식은 다음 식(23)로 간단히 표현된다.

\[\tau_e = \sum_{x=a,b,c} E_x i_x - K_i i_x \quad (23) \]

여기서, 상수 \(K_i \)는 단위 상전류에 대해 전기적으로 발생 토크로 정의된다. \(i_x \)는 영구자석의 극수로 \(\omega_c \)는 회전자의 전기각속도라 하면, \(\omega_c = (p/2) \omega_e \)이다.

3.1 전류제어기 설계
전류제어기의 설계에 앞서 식 (13)은 다음의 식 (24)에서 식 (25)와 같이 정의할 수 있다.

\[e_x = K_i i_{\text{ref}} - K_i i_x \quad (24) \]

\[i_{\text{ref}} = \alpha \left(\frac{e_x}{K_i} \right) \quad (25) \]

설계된 \(i_{\text{ref}} \)를 이용하여 전류오차를 정의하면 다음 식 (26)과 같다.

\[e_i = i_{\text{ref}} - i_x \quad (26) \]

전류제어기의 설계를 위해 평가함수를 새로이 구성하면 다음의 식 (27)와 같고, 평가함수의 시간에 대한 변화율은 다음 식 (28)과 같다.

\[V_3 = V_2 + \frac{1}{2} e_i^2 \]

\[\dot{V}_3 = \dot{V}_2 + e_i \dot{e}_i \quad (28) \]

식 (28)의 \(\dot{e}_i \)는 다음 식 (29)와 같다.

\[\dot{e}_i = \dot{i}_x - \frac{1}{L_s} (- R_s i_x - E_x + U_x) \quad (29) \]

식 (28)을 음이 되게 하는 제어입력은 식 (29)를 이용하여 구하면 다음의 식 (30)과 같다.

\[U_x = R_s i_x + E_x + L_s \left(i_{\text{ref}} + (K_i/J_m) e_u + k_i e_i \right) \quad (30) \]

제어입력 \(U_x \)를 이용하여 식 (29)을 정리하면 다음 식 (31)과 같다.

\[\dot{e}_i = -k_i e_i - \frac{K_i}{J_m} e_u \quad (31) \]

식 (28)을 식 (15)와 식 (31)을 이용하여 정리하면 다음의 식 (32)과 같다.

\[\dot{V}_3 = -k_i e_i^2 - k_i e_i^2 - k_i e_i^2 \quad (32) \]

식 (32)은 적당한 양의 이득 \(k_i, k_i, k_i \)를 선택하면 식 (27)은 음의 값(Negative definite)을 가지게 되고, 전체시스템은 제어입력에 관한 식 (30), 식 (7)과 식(12)로 근근적인 안정을 취하게 된다.

3.2 전류 제어기 이득 설정
전체 시스템의 근근적인 안정을 취하기 위한 방법은 이득 \(k_i, k_i, k_i \)를 적당히 양이 되도록 하는 것이 다. 식 (16)과 식 (31)을 이용하여 정리하면 오차에 관한 미분방정식은 다음의 식 (33)과 같다.

\[\begin{bmatrix} e_i \\ e_u \end{bmatrix} = \begin{bmatrix} -k_i & 0 \\ -1 & - \frac{K_i}{J_m} \\ -1 & -k_i \end{bmatrix} \begin{bmatrix} e_i \\ e_u \end{bmatrix} \quad (33) \]

식 (33)의 특성방정식은 다음의 식 (34)와 같다.

\[\Delta_2 = s^3 + (k_i + k_i + k_i) s^2 + (k_i k_i + k_i k_i + k_i k_i + a^2 + 1) s + (k_i k_i k_i) \quad (34) \]

식 (34)에서 \(a = K_i/J_m \) 이다. 앞서 선정하였던 속도 및 위치이득을 이용하면 다음 식 (35)와 같다.

\[\Delta_2 = \frac{1 + k_i s^3 + (k_i + k_i) s + k_i k_i + 1}{s^2 + (k_i + k_i) s + k_i k_i + a^2 + 1} s + k_i a^2 \quad (35) \]

406
식 (35)의 근의 궤적은 다음 그림 3과 같다.

그림 3은 식 (20)의 \(\zeta = 1 \) 과 식 (21)의 \(\omega_n = 2 \) 일 때, \(k_p = 3 \) 와 \(k_w = 1 \) 인 이득을 갖게 되고, 이때 전류
이득 \(k_i \)의 값에 따라 근을 갖는 그림이다. 그림 3의
(a)는 전류이득 \(k_i \)의 전체 영역에 대해 나타내었고,
그림 (b)는 전류이득 \(k_i \geq 698000 \) 인 영역을 확대해
서 그린 그림이다. 근의 움직임은 \(k_i = 0 \) 일 때 세근
\(-3, 0.5 \pm 2530 \) 에서 출발해서 약 \(k_i = 5060 \) 부근
에서 중근 \(-2530 \) 과 나머지 한 근 \(-3 \)을 가진다. 이
후 \(k_i \)가 커질수록 한 근은 실수축의 \(-\infty \) 로 다가가
며 나머지 두 근은 두 영점 \(-2 \) 로 다가서게 된다.

그림 4는 식 (20)의 \(\zeta = 50 \) 과 식 (21)의 \(\omega_n = 100 \)
일 때, \(k_p = 9999 \) 와 \(k_w = 1 \) 인 이득을 갖게 되고,
이제 전류이득 \(k_i \)의 값에 따라 근을 갖는 그림이다.
근의 움직임은 \(k_i = 0 \) 일 때 세근 \(-10000, 0.5 \pm 2530 \)
에서 출발해서 약 \(k_i = 5060 \) 부근에서
중근 \(-2530 \) 과 나머지 한 근 \(-9999 \)을 가진다. 이
후 \(k_i \)가 커질수록 한 근은 실수축의 \(-\infty \) 로 다가가
며 나머지 두 근은 영점 \(-9999 \) 과 \(-1\)로 다가서게 된다.

IV. 성능평가

제안된 제어기의 성능은 위치 및 속도의 추종 능력 을 설정된 이득으로 BLDC 전동기에 시뮬레이션 하였으며 사용된 전동기의 사양은 다음 표 1과 같다.
표 1. BLDC 전동기 파라메터
Table 1. BLDC motor parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Rated Power</td>
<td>3-phase 120W</td>
</tr>
<tr>
<td>Motor Rated Speed</td>
<td>5000 RPM</td>
</tr>
<tr>
<td>Pole Number (p)</td>
<td>4</td>
</tr>
<tr>
<td>Stator Resistance, R_s</td>
<td>0.215 Ω</td>
</tr>
<tr>
<td>Stator Inductance, L_s</td>
<td>0.055 mH</td>
</tr>
<tr>
<td>Moment of Inertia, J_m</td>
<td>0.0000085 Kg m²</td>
</tr>
<tr>
<td>Friction coefficient, B_m</td>
<td>0.00010625 Nm/rad/s</td>
</tr>
<tr>
<td>back EMF constant, K_e</td>
<td>0.00234 V/rad/s</td>
</tr>
<tr>
<td>Torque Constant, K_t</td>
<td>0.0215 Nm/A</td>
</tr>
</tbody>
</table>

운전방법은 다음 표 2와 같다.

표 2. 전동기 운전조건
Table 2. Condition of BLDC motor driving

<table>
<thead>
<tr>
<th>Times (s)</th>
<th>0.0-0.2</th>
<th>0.2-0.3</th>
<th>0.3-0.7</th>
<th>0.7-0.8</th>
<th>0.8-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{ref} (rad)</td>
<td>753.6t</td>
<td>157</td>
<td>376.8</td>
<td>-157</td>
<td>-753.6t</td>
</tr>
<tr>
<td>ω_{ref} (rad/s)</td>
<td>753.6</td>
<td>0</td>
<td>-753.6</td>
<td>0</td>
<td>753.6</td>
</tr>
<tr>
<td>τ_i (Nm)</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_y</td>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_{i_1}</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_{i_2}</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_{i_3}</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_{i_4}</td>
<td>7.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_{i_5}</td>
<td>9.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

표 2의 운전조건에서 제어이득 k_y, k_{i_1}은 $\zeta = 20$과 $\omega_n = 50$로 하여 식 (18)와 식 (19)에 의해 얻어진 값이다. 그리고 k_i는 1,000에서 9,000까지 다섯 값에 대해 하여 근은 다음 표 3과 같다.

표 3. 제어이득 k_i에 대한 세근
Table 3. Three roots at the gain k_i

<table>
<thead>
<tr>
<th>Gain</th>
<th>Root 1</th>
<th>Root 2</th>
<th>Root 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{i_1}</td>
<td>-501+11010</td>
<td>-501+11010</td>
<td>-2000</td>
</tr>
<tr>
<td>k_{i_2}</td>
<td>-508</td>
<td>-2000</td>
<td>-2490</td>
</tr>
<tr>
<td>k_{i_3}</td>
<td>-208</td>
<td>-2000</td>
<td>-4730</td>
</tr>
<tr>
<td>k_{i_4}</td>
<td>-187</td>
<td>-2000</td>
<td>-6810</td>
</tr>
<tr>
<td>k_{i_5}</td>
<td>-144</td>
<td>-2000</td>
<td>-8890</td>
</tr>
</tbody>
</table>
백스텝핑을 기반으로 하는 BLDC 전동기의 위치 및 속도 제어(이득 설정)

그림 5와 그림 6에서 (a)의 두 번째 그래프는 기준 속도에 대한 추정성능의 결과로 정리하면 다음 표 4와 같다.

<table>
<thead>
<tr>
<th>Gain</th>
<th>Overshoot [%]</th>
<th>Maximum speed [rad/s]</th>
<th>Steady state error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{1.1}$</td>
<td>28.3</td>
<td>966</td>
<td>≤ 1</td>
</tr>
<tr>
<td>$k_{1.2}$</td>
<td>14.7</td>
<td>864</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>$k_{1.3}$</td>
<td>11.6</td>
<td>840</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>$k_{1.4}$</td>
<td>9.9</td>
<td>828</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>$k_{1.5}$</td>
<td>8.8</td>
<td>820</td>
<td>≤ 0.05</td>
</tr>
</tbody>
</table>

제어이득 $k_{1.1}$의 경우 달래운 환경에 설치하는 결과를 볼 수 있는데, 이는 표 1에서 확인하였듯이 복소수 근을 갖는 원인으로 판단된다. 또한, (a)의 첫 번째 그림은 위치 제어가 되는 모습으로 표 3의 제어이득 k_{1}에 따라 근의 궤적이 표 3의 나타난 바와 같이 한 실근은 운의 원점으로 접근하고 나머지 두 다른 한 근은 운의 무한대로 접근하는 모습으로 오버슈트가 점차 감소하는 모습을 보이고 있다. 정상 상태에 도달하는데 전적으로 빠른 모습을 보이지만, 작은 오버슈트를 갖는 이득 k_{1}가 상대적으로 많이 결리며 표를 보인다. 정상상태오차에 대해서는 전체적으로 0.05 [%]의 매우 정밀한 추종이 이루어져는 결과를 볼 수 있다.

V. 결론

본 논문에서는 BLDC의 정밀한 제어를 위한 백스텝핑 제어기 설계를 방법을 제안하였다. 먼저, 각도 및 각속도의 추정 및 전류 제어는 백스텝핑 기법을 이용하여 설계하였고, 설계된 제어기의 제어 이득은시스템이 접근적인 안정을 할 수 있는 영역에서 항상된 추정성능을 달성할 수 있도록 근의 궤적을 이용하는 방법을 제시하였다. 그 결과 위치 및 속도, 전류에 대해 시스템이 전체 운전 영역에서 접근적인 안정을
하며 고른 추종성능을 보일 수 있었다. 또한 적절한 제어이득의 선정이 시스템의 추종성능을 개선할 수 있음을 보일 수 있었다.
추후 실험을 통하여 제어기가 안정하게 위치 및 속도를 추종하는 것과 토크상수 및 역기전압의 적응 법칙을 유도하여 강건성을 증대함을 보이고자 한다.

References

감사의 글
본 논문은 2014년도 광운대학교의 교내학문연구비지원에 의해 수행되었습니 다.

저자 소개

이승(Seung Lee)
1993년 광운대학교 제어계측공학과 졸업(공학사)
1995년 광운대학교 대학원 제어계측공학과 졸업(공학석사)
2012년 광운대학교 대학원 정보제어공학과 박사 수료
2013년~현재 (주)와코 시스템사업부 부장
※ 관심분야: 가변속 시스템, 지능로봇 시스템

전용호(Yong-Ho Jeon)
1996년 광운대학교 제어계측공학과 졸업(공학사)
1998년 광운대학교 대학원 제어계측공학과 졸업(공학석사)
2008년 광운대학교 대학원 정보제어공학과 졸업(공학박사)
2013년~현재 중원대학교 메카트로닉스학과 교수
※ 관심분야: 가변속 시스템, 지능로봇 시스템
조황(Whang Cho)

1981년 인하대학교 기계공학과 졸업(공학사)
1985년 University of Texas Austin 기계공학과 졸업(공학석사)
1989년 University of Texas Austin 기계공학과 졸업(공학박사)
1990년~현재 광운대학교 로봇학부 정보제어공학과 교수
※ 관심분야: 지능 로봇 시스템, 모빌리티 메커니즘 설계 및 제어