DOI QR코드

DOI QR Code

양극전착을 통한 그래핀-바나듐 산화물 복합체 제조 및 전기화학적 특성평가

Electrochemical Properties of Graphene-vanadium Oxide Composite Prepared by Electro-deposition for Electrochemical Capacitors

  • 정희영 (충북대학교 화학공학과) ;
  • 정상문 (충북대학교 화학공학과)
  • Jeong, Heeyoung (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2014.06.19
  • 심사 : 2014.08.24
  • 발행 : 2015.04.01

초록

본 연구에서는 전극 활물질로서 그래핀-바나듐 산화물 복합체를 pH 1.8 조건에서 0.5M $VOSO_4$ 수용액을 이용하여 전기화학적 전착을 이용해 합성하였다. 전착공정 후 다공성 바나듐 산화물이 작업전극에 생성된 것을 SEM, XRD, XPS를 통해 확인하였으며 생성된 바나듐 산화물은 $V^{5+}$$V^{4+}$로 존재한다. 그래핀에 전착된 바나듐 산화물의 직경 약 100 nm의 나노로드로 이루어진 망상 구조는 전극과 전해질과의 접촉을 향상시킨다. 4000 초의 전착공정을 거친 그래핀-바나듐 산화물 복합체를 작업전극으로 하여 3전극 셀에서 전기화학적 특성을 평가한 결과 20 mV/s의 주사속도에서 $854mF/cm^2$의 높은 정전용량을 나타내었고 1000회 충방전 후 초기 용량의 53%가 유지되었다.

The nanostructural graphene/vanadium oxide (graphene/$V_2O_5$) composite with enhanced capacitance was synthesized by the electro-deposition in 0.5 M $VOSO_4$ solution. The morphology of composites was characterized using scanning electron microscopy (SEM), x-ray diffraction pattern (XRD), and x-ray photoelectron spectroscopy (XPS). The oxidation states of the electro-deposited vanadium oxide was found to be $V^{5+}$ and $V^{4+}$. The morphology of the prepared graphene/$V_2O_5$ composite exhibits a netlike nano-structure with $V_2O_5$ nanorods in about 100 nm diameter, which could lead a better contact between electrolyte an electrode. The composite with a deposition time of 4,000 s exhibits the specific capacitance of $854mF/cm^2$ at a scan rate of 20 mV/s and the capacitance retention of 53% after 1000 CV cycles.

키워드

참고문헌

  1. Choi, B. G., Huh, Y. S. and Hong, W. H., "Electrochemical Characterization of Porous Graphene Film for Supercapacitor Electrode," Korean Chem. Eng. Res., 50(4), 754-757(2012). https://doi.org/10.9713/kcer.2012.50.4.754
  2. Reddy, R. N. and Reddy, R. G., "Porous Structured Vanadium Oxide Electrode Material for Electrochemical Capacitors," J. Power Sources, 156(2), 700-704(2006). https://doi.org/10.1016/j.jpowsour.2005.05.071
  3. Ghosh, A., Ra, E. J., Jin, M., Jeong, H., Kim, T. H., Biswas, C. and Lee, Y. H., "High Pseudocapacitance from Ultrathin $V_{2}O_{5}$ Films Electrodeposited on Self Standing Carbon Nanofiber Paper," Adv. Funct. Mater., 21(13), 2541-2547(2011). https://doi.org/10.1002/adfm.201002603
  4. Fang, W., "Synthesis and Electrochemical Characterization of Vanadium Oxide/Carbon Nanotube Composites for Supercapacitors," The Journal of Physical Chemistry C, 112(30), 11552-11555 (2008). https://doi.org/10.1021/jp8011602
  5. Toupin, M., Belanger, D., Hill, I. R. and Quinn, D., "Performance of Experimental Carbon Blacks in Aqueous Supercapacitors," J. Power Sources, 140(1), 203-210(2005). https://doi.org/10.1016/j.jpowsour.2004.08.014
  6. Frackowiak, E., Khomenko, V., Jurewicz, K., Lota, K. and Beguin, F., "Supercapacitors Based on Conducting Polymers/Nanotubes Composites," J. Power Sources, 153(2), 413-418(2006). https://doi.org/10.1016/j.jpowsour.2005.05.030
  7. Kim, Y. I., Yoon, J. K., Kown, J. S. and Ko, J. M., "Supercapacitive Properties of a Hybrid Capacitor Consisting of Co-Mn Oxide Cathode and Activated Carbon Anode," Korean Chem. Eng. Res., 48(4), 440-443(2010).
  8. Galizzioli, D., Tantardini, F. and Trasatti, S., "Ruthenium Dioxide: A New Electrode Material. I. Behaviour in Acid Solutions of Inert Electrolytes," J. Appl. Electrochem., 4(1), 57-67(1974). https://doi.org/10.1007/BF00615906
  9. Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N. and Qin, L., "Graphene and Nanostructured $MnO_2$ Composite Electrodes for Supercapacitors," Carbon, 49(9), 2917-2925(2011). https://doi.org/10.1016/j.carbon.2011.02.068
  10. Bonso, J. S., Rahy, A., Perera, S. D., Nour, N., Seitz, O., Chabal, Y. J., Balkus, K. J., Ferraris, J. P. and Yang, D. J., "Exfoliated Graphite Nanoplatelets-$V_2O_5$ Nanotube Composite Electrodes for Supercapacitors," J. Power Sources, 203, 227-232(2012). https://doi.org/10.1016/j.jpowsour.2011.09.084
  11. Zhou, X., Cui, C., Wu, G., Yang, H., Wu, J., Wang, J. and Gao, G., "A Novel and Facile Way to Synthesize Vanadium Pentoxide Nanospike as Cathode Materials for High Performance Lithium Ion Batteries," J. Power Sources, 238, 95-102(2013). https://doi.org/10.1016/j.jpowsour.2013.03.078
  12. Zhou, X., Wu, G., Gao, G., Cui, C., Yang, H., Shen, J., Zhou, B. and Zhang, Z., "The Synthesis, Characterization and Electrochemical Properties of Multi-wall Carbon Nanotube-induced Vanadium Oxide Nanosheet Composite as a Novel Cathode Material for Lithium Ion Batteries," Electrochim. Acta, 74, 32-38(2012). https://doi.org/10.1016/j.electacta.2012.03.178
  13. Pan, A., Zhang, J., Nie, Z., Cao, G., Arey, B. W., Li, G., Liang, S. and Liu, J., "Facile Synthesized Nanorod Structured Vanadium Pentoxide for High-rate Lithium Batteries," J. Mater. Chem., 20(41), 9193-9199(2010). https://doi.org/10.1039/c0jm01306d
  14. Mai, L., Xu, L., Han, C., Xu, X., Luo, Y., Zhao, S. and Zhao, Y., "Electrospun Ultralong Hierarchical Vanadium Oxide Nanowires with High Performance for Lithium Ion Batteries," Nano letters, 10(11), 4750-4755(2010). https://doi.org/10.1021/nl103343w
  15. Kong, L., Liu, M., Lang, J., Liu, M., Luo, Y. and Kang, L., "Porous Cobalt Hydroxide Film Electrodeposited on Nickel Foam with Excellent Electrochemical Capacitive Behavior," Journal of Solid State Electrochemistry, 15(3), 571-577(2011). https://doi.org/10.1007/s10008-010-1125-6
  16. Potiron, E., Le Gal La Salle, A., Verbaere, A., Piffard, Y. and Guyomard, D., "Electrochemically Synthesized Vanadium Oxides as Lithium Insertion Hosts," Electrochim. Acta, 45(1), 197-214(1999). https://doi.org/10.1016/S0013-4686(99)00204-2
  17. Jeong, K. H. and Jeong, S. M., "Enhanced Capacitance of Unexfoliated Graphite Oxide by Coupled Electro-deoxidation/functionalization in An Alkali Solution," Electrochim. Acta, 108, 801-807 (2013). https://doi.org/10.1016/j.electacta.2013.07.051
  18. Meier, R. J. and Pijpers, A., "Oxygen-induced Next-nearest Neighbour Effects on the C1s-levels in Polymer XPS-spectra," Theoretica. Chimica. Acta., 75(4), 261-270(1989). https://doi.org/10.1007/BF00533192
  19. Choi, J., "The Surface Properties of Vanadium Compounds by X-ray Photoelectron Spectroscopy," Appl. Surf. Sci., 148(1), 64-72 (1999). https://doi.org/10.1016/S0169-4332(99)00132-4
  20. Silversmit, G., Depla, D., Poelman, H., Marin, G. B. and De Gryse, R., "Determination of the V2p XPS Binding Energies for Different Vanadium Oxidation States ($V_5$ to $V_0$)," J. Electron Spectrosc. Relat. Phenom., 135(2), 167-175(2004). https://doi.org/10.1016/j.elspec.2004.03.004
  21. Toupin, M., Brousse, T. and Belanger, D., "Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide," Chem. Mater., 14(9), 3946-3952(2002). https://doi.org/10.1021/cm020408q
  22. Lao, Z. J., Konstantinov, K., Tournaire, Y., Ng, S. H., Wang, G. and Liu, H. K., "Synthesis of Vanadium Pentoxide Powders with Enhanced Surface-area for Electrochemical Capacitors," J. Power Sources, 162(2), 1451-1454(2006). https://doi.org/10.1016/j.jpowsour.2006.07.060
  23. Li, J., Chang, K. and Hu, C., "A Novel Vanadium Oxide Deposit for the Cathode of Asymmetric Lithium-ion Supercapacitors," Electrochem. Commun., 12(12), 1800-1803(2010). https://doi.org/10.1016/j.elecom.2010.10.029

피인용 문헌

  1. Porous Electrodes with Lower Impedance for Vanadium Redox Flow Batteries vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.638
  2. 전착법을 이용한 슈퍼커패시터용 다공성 Co(OH)2 나노플레이크 박막의 제조 및 전기화학적 특성 vol.54, pp.2, 2015, https://doi.org/10.9713/kcer.2016.54.2.157
  3. MnO2-HCS 복합체를 이용한 슈퍼커패시터의 전기화학적 특성 vol.24, pp.3, 2015, https://doi.org/10.7464/ksct.2018.24.3.183