DOI QR코드

DOI QR Code

Modeling on Ultrasonic Velocity in Concrete Considering Micro Pore Structure and Loading Conditions

공극구조 및 하중조건에 따른 콘크리트의 초음파 속도 모델링

  • Received : 2014.11.19
  • Accepted : 2014.01.20
  • Published : 2015.03.28

Abstract

For a long time, evaluation of soundness and strength in concrete has been performed through ultrasonic velocity(UV), which is essential work in field assessment. Porosity in concrete is a major parameter indicating durability and strength, and UV passing concrete depends on porosity variation. In this paper, a modeling on UV through concrete is carried out considering porosity and the results are verified with those from test. Additionally UV in concrete under compression/tension loading condition is measured and UV modeling with loading condition is performed. Up to 50% of loading ratio, UV slightly increases and greatly drops at peak load in compression region, however it fluctuates in tensile region due to micro cracking in matrix. The proposed model shows a reasonable agreement with test results in control and compression region, and needs modification for tensile region considering micro cracks and local aggregate interlocking.

초음파 속도를 이용한 콘크리트의 건전성 및 강도평가는 오랫동안 사용되어 왔으며, 현장조사에서 필수적이다. 콘크리트 내부의 공극률은 내구성 및 강도를 평가할 수 있는 주요인자이며, 초음파 진행에 방해가 되므로 공극률 변화에 따라 초음파 속도변화가 발생한다. 본 연구에서는 기존의 공극률 모델을 이용하여 콘크리트 내부를 통과하는 초음파 속도 모델링을 수행하였으며 실험값과의 비교하였다. 또한 인장 및 압축 재하 시험과 동시에 초음파 속도를 측정하여 재하 하중비를 이용한 모델링을 수행하였다. 압축영역에서는 하중재하비 50% 수준까지 초음파 속도가 약간 증가하였으며, 최대하중에 근접할수록 급격한 속도의 감소가 발생하였다. 인장영역에서는 압축영역과 다르게 초기부터 초음파 속도가 상당히 변화하였다. 제안된 기법은 콘크리트의 건전부 및 압축영역에서는 합리적인 결과를 보이고 있으며 인장영역에서는 미세균열 및 국소적인 골재치합을 고려한 보완이 필요할 것으로 판단된다.

Keywords

References

  1. S. J. Kwon and S. S. Park, "Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography," Journal of the Korea Institute for Structural Maintenance and Inspection, Vol.16, No.2, pp.40-48, 2012. https://doi.org/10.11112/jksmi.2012.16.2.040
  2. J. H. Bungey, The Testing of Concrete in Structures, London: Blackie; pp.28-63, 1944.
  3. W. J. McCarter, T. M. Chrisp, G. Starrs, and J. Blewett, "Characterization and Monitoring of Cement-based Systems using Intrinsic Electrical Property Measurements," Cement and Concrete Research, Vol.33, pp.197-206, 2003. https://doi.org/10.1016/S0008-8846(02)00824-4
  4. S. J. Kwon, Maria Q. Feng, and S. S. Park, "Characterization of Electromagnetic Properties for Durability Performance and Saturation in Hardened Cement Mortar," NDT & International, Vol.43, No.2, pp.86-95, 2010. https://doi.org/10.1016/j.ndteint.2009.09.002
  5. 한자중, 초음파속도법에 의한 터너라이닝 콘크리트의 품질평가 개선방안 연구, 연세대학교 대학원, 석사학위논문, pp.28-56, 2002.
  6. 김동수, 이광명, "건축토목구조물의 비파괴검사방법-탄성파를 이용한 콘크리트 구조물의 비파괴검사, 한국콘크리트학회 논문집, 제10권, 제2호, pp.40-49, 1998.
  7. R. Jones, A Review of the Non-destructive Testing of Concrete, Institution of Civil Engineers and the British National Committee for Non-destructive Testing, pp.1-7, 1970.
  8. V. R. Sturrup, R. J. Vechio, and H. Caratin, "Pulse velocity as a measure of concrete compressive strength," ACI Special Publication, Vol.82, 1984.
  9. H. W. Song, S. J. Kwon, K. J. Byun, and C. K. Park, "Predicting Carbonation in Early-aged Cracked Concrete," Cement and Concrete Research, Vol.36, No.5, pp.979-989, 2006. https://doi.org/10.1016/j.cemconres.2005.12.019
  10. H. W. Song and S. J. Kwon, "Permeability Characteristics of Carbonated Concrete considering Capillary Pore Structure," Cement and Concrete Research, Vol.37, No.6, pp.909-915, 2007. https://doi.org/10.1016/j.cemconres.2007.03.011
  11. S. S. Park, S. J. Kwon, S. H. Jung, and S. W. Lee, "Modeling of Water Permeability in Early aged Concrete with Cracks based on Micro Pore Structure," Construction and Building Materials, Vol.27, No.1, pp.597-604, 2012. https://doi.org/10.1016/j.conbuildmat.2011.07.002
  12. 권성준, M. Q. Feng, "적외선 화상기법을 이용한 시멘트 모르타르 특성의 실험적 평가", 대한토목학회 논문집, 제30권, 제1A호, pp.53-59, 2010.
  13. N. Banthia, A. Biparva, and S. Mindes, "Permeability of Concrete under Stress," Cement & Concrete Research, Vol.31, pp.213-220. 2005
  14. M. Hoseini, V. Bindiganavile, and N. Banthia, "The Effect of Mechanical Stress on Permeability," Cement & Concrete Composites, Vol.31, pp.213-220, 2009. https://doi.org/10.1016/j.cemconcomp.2009.02.003
  15. 유경석, 김익범, 김지상, "굵은 골재 최대치수의 변화에 따른 초음파 속도 특성", 한국콘크리트학회 학술대회 논문집, pp.691-692, 2012.
  16. K. Maekawa, T. Ishida, and T. Kishi, "Multi-scale Modeling of Concrete Performance," Journal of Advanced Concrete Technology, Vol.1, No.2, pp.91-126, 2003. https://doi.org/10.3151/jact.1.91
  17. T. Ishida, K. Maekawa, and T. Kishi, "Enhanced Modeling of Moisture Equilibrium and Transport in Cementitious Materials under Arbitrary Temperature and Relative Humidity History," Cement and Concrete Research, Vol.37, pp.565-578, 2007. https://doi.org/10.1016/j.cemconres.2006.11.015
  18. T. Ishida and K. Maekawa, "Modeling of Durability Performance of Cementitious Materials and Structures based on Thermo-hygro Physics, Rilem Proceeding PRO 29," Life Prediction and Aging Management of Concrete Structures, pp.39-49, 2003.
  19. S. J. Kwon and H. W. Song, "Analysis of Carbonation Behavior in Concrete using Neural Network Algorithm and Carbonation Modeling," Cement and Concrete Research, Vol.40, No.1, pp.119-127, 2010. https://doi.org/10.1016/j.cemconres.2009.08.022
  20. W. M. K. Roddis, Concrete Bridge Deck Assessment using Thermography and Radar, Master Thesis, Department of Civil Engineering, MIT, Cambridge, 1987.
  21. U. B. Halabe, A. Sotoodehnia, K. R. Maser, and E. A. Kausel, "Modeling the Electro-magnetic Properties of Concrete," ACI Mater J, Vol.90, pp.552-563, 1993.
  22. 이학수, 권성준, "공극률을 이용한 고성능 콘크리트의 압축강도 특성 모델링", 한국구조물진단유지관리공학회 논문집, 제16권, 제6호, pp.124-133, 2012. https://doi.org/10.11112/jksmi.2012.16.6.124
  23. BS 1881 : Part 203, Recommendations for Measurement of Velocity of Ultrasonic Pulses in Concrete, British Standards Institution, pp.56-58, 1986.
  24. A. M. Neville, Properties of Concrete, London: Pitman, pp.12-62, 1963.