DOI QR코드

DOI QR Code

Evaluation of the Two Class Population Balance Equation for Predicting the Bimodal Flocculation of Cohesive Sediments in Turbulent Flow

난류조건에서의 점착성 유사 이군집 응집 모형 적용성 평가

  • Lee, Byung Joon (School of Construction and Environmental Engineering, Kyungpook National University) ;
  • Toorman, E.A. (Hydraulics Lab.)
  • 이병준 (경북대학교 과학기술대학 건설방재공학부) ;
  • Received : 2015.01.15
  • Accepted : 2015.02.16
  • Published : 2015.03.31

Abstract

The bimodal flocculation of cohesive sediments in water environments describes the aggregation and breakage process developing a bimodal floc size distribution with dense flocculi and floppy flocs. A two class population balance equation (TCPBE) was tested for simulating the bimodal flocculation by a model-data fitting analysis with two sets of experimental data (low and high turbulent flows) from 1-D flocculation-settling column tests. In contrast to the Single-Class PBE (SCPBE), the TCPBE could simulate interactions between flocculi and flocs and the flocculation mechanism by differential settling in a low turbulent flow. Also, the TCPBE could perform the same quality of simulation as the elaborate Multi-Class PBE (MCPBE), with a small number of floc size classes and differential equations. Thus, the TCPBE was proven to be the simplest model that is capable of simulating the bimodal flocculation of cohesive sediments in water environments and water, wastewater treatment systems.

이군집 응집현상은 수자원환경에서 점착성 유사가 결합-해체의 과정을 통해 응집핵-응집체의 이군집 입자크기분포 (Biomodal Floc Size Distribution)를 형성하는 일련의 과정을 의미한다. 본 연구는 저난류 및 고난류 두 가지 조건에서 수행한 응집-침전관 실험결과를 바탕으로 이군집 응집모형(TCPBE: Two Class Population Balance Equation)의 적용성을 단일군집 응집모형(SCPBE: Single Class Population Balance Equation) 및 다군집 응집모형(MCPBE: Multi Class Population Balance Equation)과 비교 평가하였다. 기존 SCPBE에 비하여, TCPBE는 응집핵-응집체의 상호작용 및 침강속도차에 따른 응집 기작을 모의할 수 있었다. 또한, 3개의 연립미분방정식을 가진 TCPBE는 30개 미분방정식을 가진 다군집 응집모형(MCPBE: Multi Class Population Balance Equation)과 대등한 모의 결과를 나타내었다. 따라서 TCPBE는 이군집 응집현상을 모의 할 수 있는 가장 단순한 모델로 검증되었고, 향후 수자원환경이나 수처리 공정에 다양하게 적용할 수 있으리라 판단된다.

Keywords

References

  1. Berthouex, P., and Brown, L. (1994). "Statistics for Environmental Engineers." Lewis Publishers, Boca Raton, FL.
  2. Elimelech, M., Gregory, X.J.J., and Williams, R.A. (1995). "Particle doposition and aggregation: measurement, modelling and simulation." Butterworth-Heinemann, Woburn, MA, USA
  3. Fox, R. (2003). "Computational models for turbulent reacting flows." Cambridge UK, Cambridge University Press.
  4. Hounslow, M., Ryall, R., and Marshall, V. (1988). "A discretized population balance for nucleation, growth, and aggregation." AiChE Journal, Vol. 34, No. 1, pp. 1821-1832. https://doi.org/10.1002/aic.690341108
  5. Jackson, G. (1995). "Comparing observed changes in particle size spectra with those predicted using coagulation theory." Deep-Sea Research II , Vol. 42, No. 1, pp. 159-184. https://doi.org/10.1016/0967-0645(95)00010-N
  6. Jeong, J., and Choi, M. (2003). "A simple bimodal model for the evolution of non-spherical particles undergoing nucleation, coagulation and coalescence." Journal of Aerosol Science, Vol. 34, pp. 965-976. https://doi.org/10.1016/S0021-8502(03)00067-3
  7. Jeong, J., and Choi, M. (2004). "A bimodal moment model for the simulation of particle growth." Journal of Aerosol Science, Vol. 35, pp. 1071-1090. https://doi.org/10.1016/j.jaerosci.2004.04.005
  8. Jeong, J., and Choi, M. (2005). "A bimodal particle dynamics model considering coagulation, coalescence and surface growth, and its application to the growth of titania aggregates." Journal of Colloid and Interface Science, Vol. 281, pp. 351-359. https://doi.org/10.1016/j.jcis.2004.08.096
  9. Lee, B., Toorman, E., Molz, F., and Wang, J. (2011). "A two-class population balance equation yielding bimodal flocculation of marine or estuarine sediments." Water Research, Vol. 45, No. 5, pp. 2131-2145. https://doi.org/10.1016/j.watres.2010.12.028
  10. Lee, B., Toorman, E., and Fettweis, M. (2014). "Multimodal particle size distributions of fine-grained sediments: mathematical modeling and field investigation." Ocean Dynamics, Vol. 64, No. 3, pp. 2131-2145.
  11. Li, B., Eisma, D., Xie, Q., Kalf, J., Li, Y., and Xia, X. (1999). "Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China." Journal of Sea Research, Vol. 42, pp. 105-116. https://doi.org/10.1016/S1385-1101(99)00023-4
  12. Li, Y., Wolanski, E., and Xie, Q. (1993). "Coagulation and settling of suspended sediment in the Jiaojiang river estuary, China." Journal of Coastal Research, Vol. 9, No. 2, pp. 390-402.
  13. Maggi, F. (2005). "Flocculation Dynamics of Cohesive Sediment." PhD Dissertation, Technische Universiteit Delft, the Netherlands.
  14. Maggi, F. (2009). "Biological flocculation of suspended particles in nutrient-rich aqueous ecosystems." Journal of Hydrology, Vol. 376, pp. 116-125. https://doi.org/10.1016/j.jhydrol.2009.07.040
  15. Manning, A., and Bass, S. (2006). "Variability in cohesive sediment settling fluxes: Observations under different estuarine tidal conditions." Marine Geology, Vol. 235, pp. 177-192. https://doi.org/10.1016/j.margeo.2006.10.013
  16. Manning, A., Bass, S., and Dyer, K. (2006). "Floc properties in the turbidity maximum of a mesotidal estuary during neap and spring tidal conditions." Marine Geology, Vol. 235, pp. 193-211. https://doi.org/10.1016/j.margeo.2006.10.014
  17. Manning, A., Friend, P., Prowse, N., and Amos, C. (2007). "Estuarine mud flocculation properties determined using an annular mini-flume and the LabSFLOC system." Continental Shelf Research, Vol. 27, pp. 1080-1095. https://doi.org/10.1016/j.csr.2006.04.011
  18. Mietta, F., Chassagne, C., and Winterwerp, J. (2009). "Influenceof shear rate, organic matter content, pH and salinity on mud flocculation." Journal of Colloid and Interface Science, Vol. 336, pp. 134-141. https://doi.org/10.1016/j.jcis.2009.03.044
  19. Mikkelsen, O., Hill, P., and Milligan, T. (2006). "Single-grain, microfloc and macrofloc volume variations observed with a LISST-100 and a digital floc camera." Journal of Sea Research, Vol. 55, pp. 87-102. https://doi.org/10.1016/j.seares.2005.09.003
  20. Orange, D., Garcia-Garcia, A., Lorenson, T., Nittrouer, C., Milligan, T., and Miserocchi, S. (2005). "Shallow gas and flood deposition on the Po Delta." Marine Geology, Vol. 222-223, pp. 159-177. https://doi.org/10.1016/j.margeo.2005.06.040
  21. Perianez, R. (2005). "Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion." Environmental Pollution, Vol. 133, pp. 351-364. https://doi.org/10.1016/j.envpol.2004.05.021
  22. Prat, O., and Ducoste, J. (2006). "Modeling spatial distribution of floc size in turbulent processes using the quadrature method of moment and computational fluid dynamics." Chemical Engineering Science, Vol. 59, pp. 685-697.
  23. Richardson, J., and Zaki, W. (1954). "Sedimentation and fluidisation, Part I." Trans. Inst. Chem. Engrs., Vol. 2, pp. 35-53.
  24. Spicer, P., and Pratsinis, S. (1996). "Coagulation-fragmentation: universal steady state particle size distribution." AiChE Journal, Vol. 42, p. 1612. https://doi.org/10.1002/aic.690420612
  25. Stolzenbach K., and Elimelech, M. (1994) "The effect of particle density on collisions between sinking particles-implications for particle aggregation in the ocean." Deep-sea research. Part 1. Oceanographic research papers, Vol. 41, No. 3, pp. 469-483. https://doi.org/10.1016/0967-0637(94)90091-4
  26. Toorman, E. (1999). "Sedimentation and self-weight consolidation: constitutive equations and numerical modelling." Geotechnique, Vol. 49, No. 6, pp. 709-726. https://doi.org/10.1680/geot.1999.49.6.709
  27. Van Leussen, W. (1994). "Estuarine Macroflocs : Their role in fine-grained sediment transport." Universiteit van Utrecht, the Netherlands.
  28. Van Rijn, L. (2007). "Unified View of Sediment Transport by Currents and Waves II: Suspended Transport." Journal of Hydraulic Engineering, Vol. 133, No. 6, pp. 668-689. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(668)
  29. Winterwerp, J. (2002). "On the flocculation and settling velocity of estuarine mud." Continental Shelf Research, Vol. 22, pp. 1339-1360. https://doi.org/10.1016/S0278-4343(02)00010-9
  30. Winterwerp, J., and Van Kesteren, W. (2004). "Introduction to the physics of cohesive sediment in the marine environment." Amsterdam, The Netherlands, Elsevier B.V.
  31. Yuan, Y., Wei, H., Zhao, L., and Cao, Y. (2009). "Implcations of intermittent turbulent bursts for sediment resuspension in a coastal bottom boundary layer: A field study in the western Yellow Sea, China." Marine Geology, Vol. 263, pp. 87-96. https://doi.org/10.1016/j.margeo.2009.03.023