References
- Arnold C. L. and C. J. Gibbons, 1996. Impervious surface coverage: the emergence of a key environmental indicator. Journal of the American Planning Association 62: 243-257. https://doi.org/10.1080/01944369608975688
- Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams, 1998. Large area hydrologic modeling and assessment-Part 1: Model development. Journal of the American Water Resources Association 34(1): 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
- Carey, R. O., K. W. Migliaccio, and M. T. Brown, 2011. Nutrient discharges to Biscayne Bay, Florida: trends, loads, and a pollutant index. Science of Total Environment 409: 530-539. https://doi.org/10.1016/j.scitotenv.2010.10.029
- Cohn, T. A., D. L. Caulder, E. J. Gilroy, L. D. Zynjuk, and R. M. Summers, 1992. The validity of a simple statistical model for estimating fluvial constituent loads: an empirical study involving nutrient loads entering Chesapeake Bay. Water Resources Research 28(9): 2353-2463. https://doi.org/10.1029/92WR01008
- Crawford, C. G., 1991. Estimation of suspended-sediment rating curve and mean suspended-sediment loads. Journal of Hydrology 129: 331-348. https://doi.org/10.1016/0022-1694(91)90057-O
- Dornblaser, M. M. and R. G. Striegl, 2009. Suspended sediment and carbonate transport in the Yukon river basin, Alska: Flouxes and potential future responses to climate change. Water Resource Research 45, W06411, doi:10.1029/2008WR007546.
- Haith, D. A., R. Mandel, and R. S. Wu, 1992. GWLF, generalized watershed loading functions, version 2.0, user's manual; Dept. of Agricultural & Biological Engineering, Cornell University: Ithaca, NY, USA.
- Jha, B. and M. K. Jha, 2013. Rating Curve Estimation of Surface Water Quality Data Using LOADEST. Journal of Environmental Protection 4: 849-856. https://doi.org/10.4236/jep.2013.48099
- Johnson, R. C., H. S. JIN, M. M. Carreiro, and J. D. Jack, 2013. Macroinvertebrate community structure, secondary production and trophic-level dynamics in urban streams affected by nonpoint-source pollution. Freshwater Biology 58(5): 843-857. https://doi.org/10.1111/fwb.12090
- Jung, Y. H., J. P. Moon, S. O. Lee, and Y. S. Park, 2014. Assessment of the effect of urbanization on the watershed streamflow. Journal of the Korean society of agricultural engineers 56(1): 51-59 (in Korean). https://doi.org/10.5389/KSAE.2014.56.1.051
- Lee G., Y. Shin, and Y. Jung. 2014 Development of Web-Based RECESS Model for Estimating Baseflow Using SWAT. Sustainability 6(4): 2357-2378. https://doi.org/10.3390/su6042357
- Nam, W. H., E. M. Hong, and J. Y. Choi, 2014. Uncertainty of water supply in agricultural reservoirs considering the climate change. Journal of the Korean Society of Agricultural Engineers 56(2): 11-23 (in Korean). https://doi.org/10.5389/KSAE.2014.56.2.011
- Oh, J. and A. Sankarasubramanian, 2011. Interannual hydroclimatic variability and its influence on winter nutrients variability over the southeast United States. Hydrology and Earth System Sciences 8, 10935-10971. https://doi.org/10.5194/hessd-8-10935-2011
- Oh, J., T. Sinha, and A. Sankarasubramanian, 2013. The role of retrospective weather forecasts in developing daily forecasts of nutrient loadings over the Southeast US. Hydrology and Earth System Sciences Discussions 10: 15625-15657. https://doi.org/10.5194/hessd-10-15625-2013
- Park, Y. S., 2014. Estimation of pollutant load using geneticalgorithm and regression model. Korean Journal of Environmental Agriculture 33(1): 37-43. https://doi.org/10.5338/KJEA.2014.33.1.37
- Park, Y. S. and B. A. Engel, 2014. Use of pollutant load regression models with various sampling frequencies for annual load estimation. Water 6: 1685-1697. https://doi.org/10.3390/w6061685
- Phillips, J. M., B. W. Webb, D. E. Walling, and L. Leeks, 1999. Estimating the suspended sediment loads of rivers in the LOIS study area using infrequent samples. Hydrological Processes 13: 1035-1050. https://doi.org/10.1002/(SICI)1099-1085(199905)13:7<1035::AID-HYP788>3.0.CO;2-K
- Preston, S. D., V. J. Bierman, and S. E. Silliman, 1989. An evaluation of methods for the estimation of tributary mass loads. Water Resource Research 25: 1379-1389. https://doi.org/10.1029/WR025i006p01379
- Robertson, D. M., 2003. Influence of different temporal sampling strategies on estimating total phosphorus and suspended sediment concentration and transport in small streams, Journal of the American Water Resources Association 39: 1281-1308. https://doi.org/10.1111/j.1752-1688.2003.tb03709.x
- Runkel, R. L., C. G. Crawford, T. A. Cohn, 2004. Load Estimator (LOADEST): A Fortran Program for Estimating Constituent Loads in Streams and Rivers; U.S. Geological Survey Techniques and Methods: Reston, VA, USA.
- Shuster W. C., J. Bonta, H. Thurston, E. Warnemuende, and D. R Smith, 2005. Impacts of impervious surface on watershed hydrology: a review. Urban Water Journal 2, 263-275. https://doi.org/10.1080/15730620500386529
- Sun, C., Z. Shen, R. Liu, M. Xiong, F. Ma, O. Zhang, Y. Li, and L. Chen, 2013. Historical trend of nitrogen and phosphorus loads from the upper Yangtze River basin and their responses to the Three Gorges Dam. Environmental Science and Pollution Research, 20(12): 8871-8880. https://doi.org/10.1007/s11356-013-1859-7
- USEPA, 2001 Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) v. 3.0 User's Manual; U. S. Environment Protection Agency: Washington, D.C., USA.