DOI QR코드

DOI QR Code

Posterior density estimation for structural parameters using improved differential evolution adaptive Metropolis algorithm

  • Zhou, Jin (Department of System Design Engineering, Keio University) ;
  • Mita, Akira (Department of System Design Engineering, Keio University) ;
  • Mei, Liu (Department of System Design Engineering, Keio University)
  • Received : 2014.11.27
  • Accepted : 2015.01.28
  • Published : 2015.03.25

Abstract

The major difficulty of using Bayesian probabilistic inference for system identification is to obtain the posterior probability density of parameters conditioned by the measured response. The posterior density of structural parameters indicates how plausible each model is when considering the uncertainty of prediction errors. The Markov chain Monte Carlo (MCMC) method is a widespread medium for posterior inference but its convergence is often slow. The differential evolution adaptive Metropolis-Hasting (DREAM) algorithm boasts a population-based mechanism, which nms multiple different Markov chains simultaneously, and a global optimum exploration ability. This paper proposes an improved differential evolution adaptive Metropolis-Hasting algorithm (IDREAM) strategy to estimate the posterior density of structural parameters. The main benefit of IDREAM is its efficient MCMC simulation through its use of the adaptive Metropolis (AM) method with a mutation strategy for ensuring quick convergence and robust solutions. Its effectiveness was demonstrated in simulations on identifying the structural parameters with limited output data and noise polluted measurements.

Keywords

References

  1. Beck, J.L. (2010), "Bayesian system identification based on probability logic", J. Struct. Control Health Monit., 17(7), 825-847. https://doi.org/10.1002/stc.424
  2. Beck, J.L. and Au, S.K. (2002), "Bayesian updating of structural models and reliability using Markov-Chain Monte-Carlo simulation", J. Eng. Mech. - ASCE, 128(4), 380-391. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:4(380)
  3. Beck, J.L. and Yuen, K.V. (2004), "Model selection using response measurements: A Bayesian probabilistic approach", J. Eng.Mech. -ASCE, 130(2), 192-203. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:2(192)
  4. Cheung, S.H. and Beck, J.L. (2009), "Bayesian model updating using Hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters", J. Eng. Mech. - ASCE, 135(4), 243-255. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:4(243)
  5. Chib, S. and Greenberg, E. (1995), "Understanding the Metropolis-Hasting algorithm", Am. Statist. Association, 49(4), 327-335.
  6. Ching, J. and Chen, Y.C. (2007), "Transitional Markov Chain Monte Carlo method for Bayesian model updating, model class selection and model averaging", J. Eng.Mech. - ASCE, 133(7), 816-832. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(816)
  7. Gelman, A. and Rubin, D.B. (1992), "Inference from iterative simulation using multiple sequence", Statistical Sci., 7(4), 457-472. https://doi.org/10.1214/ss/1177011136
  8. Haario, H., Saksman, E. and Tamminen, J. (2001), "An adaptive Metropolis algorithm", J. Bernouli, 7 (2), 223-242. https://doi.org/10.2307/3318737
  9. Hastie, D.I. (2012), "Model choice using reversible jump Markov chain Monte Carlo", Statistica Neerlandica, 66(3), 309-338. https://doi.org/10.1111/j.1467-9574.2012.00516.x
  10. Koh, C.G and Perry, M.J. (2007), "Structural damage quantification by system identification", J. Earthq. Tsunami, 1(3), 211-231. https://doi.org/10.1142/S1793431107000134
  11. Mita, A. (2003), Structural Dynamics for Health Monitoring, Sankeisha Co., Ltd, Nagoya, Japan.
  12. Muto, M. and Beck, J.L. (2008), "Bayesian updating and model class selection for hysteretic structural models using stochastic simulation", J. Vib. Control, 14(1-2), 7-34. https://doi.org/10.1177/1077546307079400
  13. Papadimitriou,C., Beck, J.L and Katafygiotis, L.S. (2001), "Updating robust reliability using structural test data", Probabilist. Eng. Mech., 16 (2), 103-113. https://doi.org/10.1016/S0266-8920(00)00012-6
  14. Perry, M.J., Koh, C.G. and Choo, Y.S. (2006), "Modified genetic algorithm strategy for structural identification", Comput. Struct., 84(8-9), 529-540. https://doi.org/10.1016/j.compstruc.2005.11.008
  15. Storn, R. and Price, K. (1997), "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces", J. Global Optim., 11(4), 341-359. https://doi.org/10.1023/A:1008202821328
  16. Tang, H.S., Xue, S.T. and Fan, C.X. (2008), "Differential evolution strategy for structural system identification", Comput. Struct., 86(21-22), 2004-2012. https://doi.org/10.1016/j.compstruc.2008.05.001
  17. Ter Braak, C.J.F. (2006), "A Markov Chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces", Statistics Comput., 16(3), 239-249. https://doi.org/10.1007/s11222-006-8769-1
  18. Vrugt, J.A., Ter Braak, C.J.F., Diks, C.G.H. et al. (2009), "Acceleration Markov Chain MonteCarlo simulation by differential evolution with self-adaptive randomized subspace sampling", Int. J. Nonlinear Sci. Numerical Simulation, 10(3), 273-290.
  19. Xue, S., Tang, H. and Zhou, J. (2009), "Identification of structural systems using particle swarm optimization", J. Asian Architect. Build. Eng., 8(2), 101-112.

Cited by

  1. Substructural damage detection in shear structures via ARMAX model and optimal subpattern assignment distance vol.191, pp.None, 2015, https://doi.org/10.1016/j.engstruct.2019.04.084
  2. Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: recent advances and comparative study vol.15, pp.11, 2015, https://doi.org/10.1080/15732479.2019.1628077
  3. Output-Only Damage Detection of Shear Building Structures Using an Autoregressive Model-Enhanced Optimal Subpattern Assignment Metric vol.20, pp.7, 2015, https://doi.org/10.3390/s20072050
  4. Bayesian in-situ parameter estimation of metallic plates using piezoelectric transducers vol.26, pp.6, 2015, https://doi.org/10.12989/sss.2020.26.6.735