DOI QR코드

DOI QR Code

Physiological Responses and Fruit Quality Changes of 'Fuji' Apple under the High Night Temperature

야간 고온에 의한 사과 후지 품종의 생리반응 및 과실품질 변화

  • Ryu, Suhyun (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kwon, YongHee (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Do, Kyeong Ran (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Han, Jeom Hwa (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Han, Hyun Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Han Chan (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 류수현 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 권용희 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 도경란 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 한점화 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 한현희 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 이한찬 (농촌진흥청 국립원예특작과학원 원예작물부 과수과)
  • Received : 2015.01.12
  • Accepted : 2015.03.09
  • Published : 2015.09.30

Abstract

Tropical night phenomenon has been increasing due to global warming recently, it is expected that fruit quality of apples will decrease due to elevated night temperature condition. In the present study, fruit quality at maturity, periodic anthocyanin biosynthetic gene expression and sugar contents in leaves and fruit flesh were investigated to establish the physiological responses of 'Fuji' apples under high night temperature. The night temperature were treated with such as ambient (control), ambient $-4^{\circ}C$, and ambient $+4^{\circ}C$. After the treatment, high night temperature didn't affect fruit diameter, weight, and soluble sugar contents. Coloration of ambient $+4^{\circ}C$ was poor than that of control, however there was no significant difference between these genes expression of control and that of ambient $+4^{\circ}C$ treatment in the late coloration season. Increase of sorbitol and glucose contents at ambient $+4^{\circ}C$ in leaves were smaller than those at control, and then sorbitol and sucrose contents in fruit flesh at ambient $+4^{\circ}C$ were smaller than those at control. The cross section of leaves showed that there were no differences with the structure of parenchyma and epidermis tissues between the treatments, but starch granules in the palisade parenchyma cells decreased in high night temperature treatments. Consequently, high night temperature didn't affect the fruit quality, but changed sugar contents in leaves and fruit flesh, and suppressed coloration regardless of anthocyanin biosynthetic gene expression.

최근 지구 온난화로 인해 열대야 발생 빈도가 증가하고 있으며, 야간 저온의 감소에 의한 사과의 착색 불량이 예상된다. 따라서 본 연구는 생육기 후반의 야간 고온이 '후지' 사과에 미치는 영향을 구명하기 위해 성숙기 과실 품질과 시기별 안토시아닌 생합성 유전자의 발현량을 조사하였고, 잎과 과실 내 당 함량을 비교하여 야간 고온에 의한 생리반응을 구명하고자 실시하였다. 야간온도는 7월부터 10월까지 인공기상실 내부에서 처리하였고, 대기온도 대비 $-4^{\circ}C$, $+4^{\circ}C$ 로 각각 설정하였다. 야간 고온은 과실의 횡경, 과중, 당도에 영향을 미치지 않았고 과피의 착색을 불량하게 하였지만, 착색 시기의 안토시아닌 생합성 유전자의 발현량을 변화시키지 않았다. 또한, 야간 고온에 의해서 잎의 sorbitol, glucose 함량과 과실의 sorbitol, sucrose 함량이 대조구에 비해 감소하였고, 잎 조직을 구성하고 있는 책상, 해면 등의 광합성 조직에는 차이가 나타나지 않았지만 광합성 조직 내의 전분 함량이 감소하였다. 따라서 야간 고온은 '후지' 사과의 과실 품질에는 영향을 미치지 않았지만, 잎과 과실의 당 조성을 변화시켰으며, 안토시아닌 생합성 유전자의 발현과는 관계없이 과피의 착색을 억제하였다.

Keywords

References

  1. Acock, B., M.C. Acock, and D. Pasternak. 1990. Interaction of $CO_2$ enrichment and temperature on carbohydrate production and accumulation in muskmelon leaves. J. Amer. Soc. Hort. Sci. 115: 525-529.
  2. Ban, Y., C. Honda, Y. Hatsuyama, M. Igarashi, H. Bessho, and T. Moriguchi. 2007. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48: 958-970. https://doi.org/10.1093/pcp/pcm066
  3. Ban, Y., S. Kondo, B.E. Ubi, C. Honda, H. Bessho, and T. Moriguchi. 2009. UDP-sugar biosynthetic pathway: contribution to cyanidin 3-galactoside biosynthesis in apple skin. Planta 230: 871-881. https://doi.org/10.1007/s00425-009-0993-4
  4. Bieleski, R.L. 1968. Accumulation and translocation of sorbitol in apple phloem. Aust. J. biol. Sci. 22: 611-620.
  5. Blankenship, S.M. 1987. Night-temperature effects on rate of apple fruit maturation and fruit quality. Sci. Hort. 33: 205-212. https://doi.org/10.1016/0304-4238(87)90068-9
  6. Choi, D.G., S.D. Oh, and K.S. Han. 2001. Effects of night temperature on preharvest softening in apples. J. Kor. Soc. Hort. Sci. 42: 717-720 (in Korean).
  7. Colaric, M., F. Stampar, and M. Hudina. 2007. Content levels of various fruit metabolites in the 'Conference' pear response to branch bending. Sci. Hort. 113: 261-266. https://doi.org/10.1016/j.scienta.2007.03.016
  8. Ende, W.V. and S.E.E. Esawe. 2014. Sucrose signaling pathways leading to fructan and anthocyanin accumultion: A dual function in abiotic and biotic stress response? Environ. Exp. Bot. 108: 4-13. https://doi.org/10.1016/j.envexpbot.2013.09.017
  9. Jaakola, L., A.M. Pirttila, M. Halonen, and A. Hohtola. 2001. Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol. Biotech. 19: 199-201.
  10. Lee, K., H.J. Baek, S. Park, H.S. Kang, and C.H. Cho. 2012. Future projection of changes in extreme temperatures using high resolution regional climate change scenario in the Republic of Korea. Kor. Geogr. Soc. 47: 208-225 (in Korean).
  11. Liu, Y., X. Zhang, and Z. Zhao. 2013. Effects of fruit bagging on anthocyanins, sugars, organic acids, and color properties of 'Granny smith' and 'Golden Delicious' during fruit maturation. Eur. Food Res. Technol. 236: 329-339. https://doi.org/10.1007/s00217-012-1896-3
  12. Mori, M., H. Saito, N.G. Yamamoto, M. Kitayama, S. Kobayashi, S. Sugaya, H. Gemma, and K. Hashizume. 2005. Effects of abscisic acid treatment and night temperatures on anthocyanin composition in Pinot noir grapes. Vitis 44: 161-165.
  13. Park, J.E., Y.H. Kwon, B.H.N. Lee, Y.S Park, M.H. Jung, J.H. Choi, and H.S. Park. 2013. The characteristics of anatomical structure and fruit quality according to fruit developmental stage of Pyrus pyrifolia Nakai cv. Manpungbae. J. Kor. Soc. Hort. Sci. 31: 407-414 (in Korean).
  14. Park, W.S. and M.S. Suh. 2011. Characteristics and trends of tropical night occurrence in South Korea for recent 50 years (1958-2007). Atmos. Kor. Meteorol. Soc. 21: 361-371 (in Korean).
  15. Reay, P.F. 1999. The role of low temperatures in the development of the red blush on apple fruit ('Granny smith'). Sci. Hort. 79: 113-119. https://doi.org/10.1016/S0304-4238(98)00197-6
  16. Ro, H.M., P.G. Kim, I.B. Lee, M.S. Yiem, and S.Y. Woo. 2001. Photosynthetic characteristics and growth responses of dwarf apple (Malus domestica Borkh. cv. Fuji) saplings after 3 years of exposure to elevated atmospheric carbon dioxide concentration and temperature. Trees 15: 195-203. https://doi.org/10.1007/s004680100099
  17. Shim, S.B., Y.H. Kwon, Y.P. Yoon, and H.S. Park. 2007. Comparison of fruit quality and vegetative growth in 'Kyoho' grape by crop load and thinning. Kor. J. Hort. Sci. Technol. 25: 389-393.
  18. Shin, D.H., M.G. Choi, K. Kim, G. Bang, M, Cho, S.B. Choi, G. Choi, and Y.I. Park. 2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Let. 587: 1543-1547. https://doi.org/10.1016/j.febslet.2013.03.037
  19. Ubi, B.E. 2004. External stimulation of anthocyanin biosynthesis in apple fruit. Food Agri. Environ. 2: 65-70.
  20. Ubi, B.E., C. Honda, H. Bessho, S. Kondo, M. Wada, S. Kobayashi, and T. Moriguchi. 2006. Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Sci. 170: 571-578. https://doi.org/10.1016/j.plantsci.2005.10.009
  21. Wang, K.L., D. Micheletti, J. Palmer, R. Volz, L. Lozano, R. Espley, R.P. Hellens, D. Changne, D.D. Rowan, M. Troggio, I. Iglesias, and A.C. Allan. 2011. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ. 34: 1176-1190. https://doi.org/10.1111/j.1365-3040.2011.02316.x
  22. Xie, X.B., S. Li, R.F. Zhang, J. Zhao, Y.C. Chen, Q. Zhao, Y.X. Yao, C.X. You, X.S. Zhang, and Y.J. Hao. 2012. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ. 35: 1884-1897. https://doi.org/10.1111/j.1365-3040.2012.02523.x