DOI QR코드

DOI QR Code

Effect of Root Zone Cooling Using the Air Duct on Temperatures and Growth of Paprika During Hot Temperature Period

공기순환 덕트를 이용한 근권부 냉방이 고온기 파프리카 재배에서 온도와 생육에 미치는 영향

  • Choi, Ki Young (Department of Controlled Agriculture, Kangwon National University) ;
  • Jang, Eun Ji (Department of Environmental Horticulutre, The University of Seoul) ;
  • Rhee, Han Cheol (Protected Horticulture Experiment Station, NHRI, RDA) ;
  • Yeo, Kyung-Hwan (Protected Horticulture Experiment Station, NHRI, RDA) ;
  • Choi, Eun Young (Department of Agricultural Sciences, Korea National Open University) ;
  • Kim, Il Seop (Department of Horticulture, Kangwon National University) ;
  • Lee, Yong-Beom (Department of Environmental Horticulutre, The University of Seoul)
  • 최기영 (강원대학교 시설농업학과) ;
  • 장은지 (서울시립대학교 환경원예학과) ;
  • 이한철 (한국방송통신대학교 농학과) ;
  • 여경환 (한국방송통신대학교 농학과) ;
  • 최은영 (국립원예특작과학원 시설원예시험장) ;
  • 김일섭 (강원대학교 원예학과) ;
  • 이용범 (서울시립대학교 환경원예학과)
  • Received : 2015.08.12
  • Accepted : 2015.09.15
  • Published : 2015.09.30

Abstract

This study aimed to determine the effects of root zone cooling using air duct on air temperature distribution and root zone and leaf temperatures of sweet pepper (Capsicum annum L. 'Veyron') grown on coir substrate hydroponic system in a greenhouse. When the air duct was laid at the passage adjacent the slab, the direction of air blowing was upstream at $45^{\circ}$. The cooling temperature was set at $20^{\circ}C$ for day and $18^{\circ}C$ for night. For cooing timing treatments, the cooling air was applied at all day (All-day), only night time (5 p.m. to 1 a.m.; Night), or no cooling (Control). The air temperature inside the greenhouse at a height of 40 and 80cm above the floor, and substrate and leaf temperatures, fruit characteristics, and fruit ratio were measured. Under the All-day treatment, the air temperature was decreased about $4.4{\sim}5.1^{\circ}C$ at the height of 40cm and $2.1{\sim}3.1^{\circ}C$ at the height of 80cm. Under the Night treatment, the air temperature was decreased about $3.4{\sim}3.8^{\circ}C$ at the height of 40cm and $2.2{\sim}2.7^{\circ}C$ at the height of 80cm. The daily average temperature in the substrate was in the order of the Control ($27.7^{\circ}C$) > Night ($24.1^{\circ}C$) > All-day ($22.8^{\circ}C$) treatment. Cooling the passage with either upstream blowing at $45^{\circ}$ or horizontal blowing at $180^{\circ}$ was effective in lowering the air temperature at a height of 50cm; however, no difference at a height of 100cm. Cooling the passage with perpendicular direction at $90^{\circ}$ was effective in lowering the air temperature at the height between 100 and 200cm above the floor; however, no effect on the temperature at the height of 50cm. A greater decrease in leaf temperature was found at 7 p.m. than that at 9. a.m. under both All-day and Night treatments. Fresh weight partitioning of fruit was in the order of the All-day (48.6%) > Night (45.6%) > Control (24.4%) treatment. A higher fruit production was observed under the All-day treatment, in which the accumulated average temperature was the lowest, and it may have been led to a higher proportion of photosynthate distributed to fruit than other treatments.

근권부 공기순환 덕트 냉방이 온도 및 생육에 미치는 영향을 구명하고자 고온기 파프리카((Capsicumannum.L. 'Veyron')을 코이어배지에서 수경재배하였다. 냉방시간처리는 24시간 연속 가동한 연속냉방(All-day), 17시부터 다음날 1시까지 8시간 냉방한 야간냉방(Night), 대조구인 냉방 무처리(Control) 등 3 처리하여 온실 상 하부 온도, 근권온도, 엽온, 과실 특성 및 기관 분배율을 측정하였다. 근권부 덕트 냉방하였을 때, 고온기(6월 ~8월) 온실하부(바닥으로부터 40cm)와 상부(바닥으로부터 180cm) 온도, 근권온도는 하강되었다. 대조구와 비교하여 온실하부/상부 온도 차이가 연속냉방에서는 $4.4{\sim}5.1^{\circ}C/2.1{\sim}3.1^{\circ}C$ 하강을, 야간냉방 처리에서는 $3.4{\sim}3.8^{\circ}C/2.2{\sim}2.7^{\circ}C$ 하강되었다. 근권온도는 온실 하부 온도 결과와 유사했으며, 연속냉방($22.8^{\circ}C$)> 야간 냉방($24.1^{\circ}C$) > 대조구($27.7^{\circ}C$) 순으로 온도가 낮았다. 연속냉방 처리에서 덕트 위치(통로, 베드하단)와 송풍 방향($45^{\circ}$, $90^{\circ}$, $180^{\circ}$)에 따른 온도 변화를 측정한 결과 덕트의 위치가 통로에 위치하고 송풍방향이 상향($45^{\circ}$) 또는 수평($180^{\circ}$)인 처리는 지상부 100cm까지의 수직 위치에 따른 온도 차이가 크지 않지 않으면서, 근권부위 온도인 지상 50cm 온도가 낮은 특징을 보였고 베드와 베드 공간 사이로 덕트 송풍 방향이 직각($90^{\circ}$)이였을 때는 바닥과 지상 50cm 부위의 온도가 높고, 지상 100cm 이상 200cm 부위 온도가 상대적으로 낮았다. 연속냉방 또는 야간냉방 처리했을 때 파프리카 엽온은 오후 7시가 오전 9시 보다 엽온 하강이 컸다. 과실 분배율은 대조구(24.4%)에 비해 연속냉방(48.6%)과 야간냉방(45.6%)에서 높았으며, 평균과중, 과수 및 수량도 연속냉방 처리에서 가장 높았다. 한편 야간냉방 처리에서도 고온기 평균 지상부 및 근권온도를 낮추었으나, 누적된 평균온도가 가장 낮은 연속냉방처리에서 과실로의 동화산물 분배율을 높여 파프리카 수량을 증가시킨 것으로 보인다.

Keywords

References

  1. Al-Faraj, A., G.E. Meyer, and G.L. Horst. 2001. A crop water stress index for tall fescue (Festuca arundinacea Schreb.) irrigation decision-making-a traditional method. Comp. Electron. Agric. 31:107-124. https://doi.org/10.1016/S0168-1699(00)00182-4
  2. Bakker, J.C. 1989. The effects of temperature on flowering, fruit set and fruit development of glass sweet pepper. J. HortSci. 64:313-320.
  3. Choi, K.Y., J.Y. Ko, E.Y. Choi, H.C. Rhee, S.E. Lee, and Y.B. Lee. 2013. The effect of root zone cooling at night on substrate temperature and physiological response of paprika in hot climate. Protected Hort. Plant Fac. 22:349-354 (in Korean). https://doi.org/10.12791/KSBEC.2013.22.4.349
  4. Choi, K.Y., J.Y. Ko, H.J. Yoo, E.Y. Choi, H.C. Rhee, and Y.B. Lee. 2014. Effect of cooling timeing in the root zone on substrate temperature and physiological response of sweet pepper in summer cultivation. Kor. J. Hort. Sci. Technol. 32:53-59 (in Korean).
  5. Choi, Y.H., J.K. Kwon, J.H. Lee, N.J. Kang, M.W. Cho, and B.G. Son. 2004. Effect of Cooling Method on Growth and Yield of Tomato and Pepper Grown in Summer Season Greenhouse Culture. Kor. J. Hort. Sci. Technol. 22:388-392.
  6. He, J., S.K. Lee, and I.C. Dodd. 2001. Limitations to photosynthesis of lettuce grown under tropical conditions: alleviation by root-zone cooling. J. of Expt. Bot. 52:1323-1330. https://doi.org/10.1093/jexbot/52.359.1323
  7. Khah, E.M. and H.C. Passam. 1992. Flowering, fruit set and development of the fruit and seed of sweet pepper cultivated under conditions of high ambient temperature. J. HortSci. 67:251-258.
  8. Kim, K.D, Y.S. Ha, K.M. Lee, D.H. Park, S. Kwon, J.M. Park, and S.W. Chung. 2010. Development of temperature control technology of root zone using evaporative cooling methods in the strawberry hydroponics. J. Bio-Env. Con. 19:184-188.
  9. Lee, J.H., K.J. Kwon, O.K. Kwon, Y.H. Choi, and D.K. Park. 2002. Cooling efficiency and growth of tomato as affected by root zone cooling methods in summer season. J. Bio-Environ. Con. 11:81-87 (in Korean).
  10. Lee, J.H, Y.B. Lee, J.K. Kwon, N.J. Kang, H.J. Kim, Y.H, Choi, J.M. Park, and H.C. Rhee. 2006. Effect of greenhouse cooling and transplant quality using geothermal heat pump system. J. Bio-Env. Con. 15:211-216 (in Korean).
  11. Lee, J.H. 2009. Effect using for energy saving by geothermal heat and root-zone cooling system in a greenhouse. PhD. Diss., Youngnam Univ., Kyungsang, Korea. p.2 and 6-7 (in Korean).
  12. Lee, E.J. D.H. Kim, D.J. Myoung, J.H. Bae, and J.H. Lee. 2011. Effect of early-night temperature in summer season on plant growth and development of sweet pepper. Kor. J. Hort. Sci. Technol. 29(Suppl ):81 (in Korean).
  13. Morgan, L. 2011. Root zone chilling. http://www.thctalk.com/cannabis-forum/archive/index.php/t-50357.html.
  14. Na, T.S., K.J. Choi, B.K. Yun, M.S. Cho, H.G. Kim, and H.J. Kim. 2011. Cooling effect on bell pepper on glass house in summer. Kor. J. Hort. Sci. Technol. 29(Suppl ):79-80 (in Korean).
  15. Ofir, M., Y. Gross, F. Bangerth, and J. Kigel. 1993. High temperature effects on pod and seed production as related to hormone levels and abscission of reproductive structure in common bean (Phaseoulus vulgaris L.). Sci. Hortic. 55:201-211. https://doi.org/10.1016/0304-4238(93)90032-L
  16. Rylski, I. and M. Spigelman. 1982. Effects of different diurnal temperature combinations on fruit set of sweet pepper. Sciencia Hort. 17:101-106. https://doi.org/10.1016/0304-4238(82)90001-2
  17. Won J.H., S.J. Jeon, S.Y. Lee, and B.C. Jeong. 2007. The effect of root-zone cooling on the yield of sweet pepper (Capsicum annuum L.) in hydroponics during summer cultivation. J. Bio-Environ. Con. 16:288-292 (in Korean).