DOI QR코드

DOI QR Code

덕유산의 생태계 탄소축적량 산정에 관한 연구

A Study of Accumulated Ecosystem Carbon in Mt. Deogyusan, Korea

  • 투고 : 2015.11.30
  • 심사 : 2015.12.16
  • 발행 : 2015.12.31

초록

지역적 규모의 탄소순환과 저장량 변화에 대한 자료는 지구적 규모의 탄소순환 형태 변화를 예측하는 중요한 자료가 된다. 따라서 다양한 지역적 규모의 생태계에 대한 자료 수집은 필수적이다. 본 연구는 국내 다양한 생태계 중 자연성이 높은 국립공원지역 산림 생태계의 탄소축적량을 산정하여 자연군락이 축적 가능한 탄소축적 잠재량을 평가하기 위해 진행되었다. 연구대상지인 덕유산국립공원은 신갈나무 우점군락 10,881.5 ha (47.2%), 굴참나무 우점군락 2,314.6 ha (10.0%), 소나무 우점군락 1,952.6 ha (8.5%), 졸참나무 우점군락 402.9 ha (1.7%) 등이 분포하고 있는 것으로 조사되었다. 조사구는 군락의 분포지역을 확인하고, 수목밀도와 종조성 등을 고려하여 선정하였고, biomass 탄소축적량을 산정하기 매목조사를 실시하였다. 각 매목조사구 내 토양샘플구 ($30cm{\times}30cm$)를 각 3개씩 설치하여 토양 탄소축적량을 조사하였다. Biomass 탄소축적량과 토양 탄소축적량은 신갈나무 우점군락에서 각각 1,749,000 tC와 7,776,000 tC로 가장 높은 값이 측정되었다. 군락별 전체 생태계에 축적되어 있는 탄소량은 신갈나무 우점군락과, 굴참나무 우점군락, 졸참나무 우점군락, 소나무 우점군락에서 각각 9,536,000 tC, 1,405,000 tC, 147,000 tC, 346,000 tC로 나타났다. 또한 덕유산국립공원의 전체 생태계 탄소축적량은 11,434,000 tC로 산정되었다.

Understanding of a carbon storage in a regional scale ecosystem is a very important data for predicting change of global carbon cycle. Therefore, the real data collected in the various ecosystems are a very useful for enhancing accuracy of model prediction. We tried to estimate total accumulated ecosystem carbon in Deogyusan National Park (DNP) with naturally well preserved ecosystem. In DNP, vegetations were classified to four main communities with Quercus mongolica community (12,636.9 ha, 54.8%), Quercus variabilis community (2,987.0 ha, 13.0%), Pinus densiflora community (5,758.0 ha, 25.0%), and Quercus serrata community (402.9 ha,1.7%). Biomass and soil carbons were estimated by the biomass allometric equations based on the DBH and carbon contents of litter and soil (0~30 cm) layers collected in 3 plots ($30cm{\times}30cm$) in each community. The biomass and soil carbons were shown as high value as 1,759,000 tC and 7,776,000 tC, respectively, in Quercus mongolia community in DNP area. In Quercus mongolica, Quercus variabilis, Quercus serrata, Pinus densiflora communities, the accumulated ecosystem carbon were shown 9,536,000 tC, 1,405,000 tC, 147,000 tC, 346,000 tC, respectively. Also, the total ecosystem carbon was estimated with 11,434,000 tC in DNP.

키워드

참고문헌

  1. Gwon JH, MK Sin, HJ Kwon and HK Song. 2013. A Study on the Forest Vegetation of Jirisan National Park. J. Korean Environ. Res. Tech. 16:93-118.
  2. Heiri O, AF Lotter and G Lemcke. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25:101-110. https://doi.org/10.1023/A:1008119611481
  3. IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva.
  4. Jang JH, JS Lee, JS Jeong, TY Song, KJ Lee, SU Suh and JS Lee. 2014. A study of environment of forest ecosystem carbon storage in Gyeryongsan National Park, Korea. Korean J. Environ. Biol. 47:319-327. https://doi.org/10.11614/KSL.2014.47.4.319
  5. Kim CH, JG Oh and NS Lee. 2013. A Study on the forest vegetation of Deogyusan National Park. Korean J. Environ. Ecol. 46:33-40. https://doi.org/10.11614/KSL.2013.46.1.033
  6. Kim CH, JG Oh, YE Choi, SS Lee and EO Kang. 2013. Study on the Distribution of Plant Community in the Deogyusan National Park. Korean J. Environ. Ecol. 46:570-580.
  7. Kim CH, JG Oh, EO Kang and JG Lim. 2014. Community Distribution on Mountain forest vegetation of the Gyebangsan area in the Odaesan National Park, Korea. Korean J. Ecol. Environ. 47:135-145. https://doi.org/10.11614/KSL.2014.47.3.135
  8. Kim G and C Kim. 1988. Research trends on forest biomass production in Korea. J. Korean. Forest Environ. 8:94-107.
  9. Kim HS, SM Lee and HG Song. 2011. Actual vegetation distribution status and ecological succession in the Deogyusan National Park. Korean J. Environ. Ecol. 25:37-43.
  10. Kim HS, S.M Lee and HK Song. 2010. Vegetation structure of the Hyangjeokbong in the Deogyusan National Park. J. Korean Environ. Res. Tech. 24:708-722.
  11. Kim JH. 1971. A study of forest productivity and growth structure, Pinus rigida plantation. J. Plant Biol. 14:19-23.
  12. Kim YO. 2012. Study on national park visitors' consciousness on nature conservation and their attitude toward eco-tourism (-Focusing on BukHanSan National Park). Tourism Res. 26:77-97.
  13. Korean Forest Research Institute. 2010. Survey manual for biomass and soil carbon.
  14. Korea Forest Service. 2010. Forest geographic information system. Korea Forest Service. Daejeon. Available from http://fgis.forest.go.kr/fgis. Accessed 2015 December 16.
  15. Korea National Park Service. 2004. Deogyusan National Park Nature Resources Survey.
  16. Korea National Park Service. 2009. Deogyusan national park. Korea National Park Service. Seoul. Available from http://deogyu.knps.or.kr/front/portal/visit. Accessed 2015 December 16.
  17. Kwon GC and DG Lee. 2006. Above- and below-ground biomass and energy content of Quercus mongolica. J. Korean. Forest Environ. 25:31-38.
  18. Kwon S, JH Seo, YM son and YK Park. 2005. Biomass carbon emissions according to conversion of forest land in Korea. J. Korean. Forest Environ. 24:10-15.
  19. Lee IK, KJ Kim, JM Cho, DW Lee, DS Cho and JS Yoo. 1994. Biodiversity Korea to 2000. Minumsa, Seoul.
  20. Lee IK, JH Lim, CS Kim and YK Kim. 2006. Nutrient dynamics in decomposing leaf litter and litter production at the Long-Term Ecological Research Site in Mt. Gyebang. J. Ecol. Field Biol. 26: 585-591.
  21. Lee JS. 2004. A study on change of an accumulated organic matter contents according to successional stage on temperate grassland. Korean J. Environ. Biol. 22:381-386.
  22. Lee NY. 2011. Estimation of Carbon Storage in Three Cool-Temperate Broad-Leaved Deciduous Forests at Bukhansan National Park, Korea J. National Park Res. 2:53-57.
  23. Lee NY. 2012. Estimation of carbon storage in three cool-temperate broad-leaved deciduous forests at Jirisan National Park, Korea. Korean J. Environ. Biol. 30:121-127.
  24. McCarl BA and UA Schneider. 2001. Greenhouse gas mitigation in U.S agricul forest. Sci. 294:2481-2482. https://doi.org/10.1126/science.1064193
  25. Ministry of Environment. 2015. Environmental geographic information system. Ministry of Environment. Sejong. Available from http://egis.me.go.kr/egis/home/main.asp. Accessed 2015 December 16.
  26. Post WM and KC Kwon. 2000. Soil Carbon Sequestration and Land-Use Change: Processes and Potential. Global Change Biol. 6:317-328. https://doi.org/10.1046/j.1365-2486.2000.00308.x
  27. Pregitzer KS and ES Euskirchen. 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biol. 10:2052-2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x
  28. Wang GJ, G Qian, G Cheng and Y Lai. 2002. Soil organic carbon pool of grassland on the Qinghai-Tibetan plateau and its global implication. Sci. Total Environ. 291:207-217. https://doi.org/10.1016/S0048-9697(01)01100-7
  29. Weon HG. 2012. Forest management for increasing carbon absorption. For. magazine (National forestry cooperative federation) 2:58-62.
  30. Weon HY, GH Oh, JH Pyo and HT Mun. 2012. Decay rate and nutrient dynamics during litter decomposition of Quercus acutissima and Quercus mysinaefolia. Korean J. Environ. Ecol. 26: 74-81.
  31. Whittaker RH and PL Marks. 1975. Methods of assessing terrestrial productivity. Springer-Verlag, New York.
  32. Yim YJ and T Kira. 1975. Distribution of forest vegetation and climate in the Korean Peninsula. Distribution of some indices of thermal climate. Jap. J. Ecol. 25:77-88.
  33. Zhu B, X Wang and J Fang. 2010. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. J. Plant Res. 123:439-452. https://doi.org/10.1007/s10265-009-0301-1