DOI QR코드

DOI QR Code

Isolation and characterization of marine bacteria with alginate degrading activity

알긴산 분해능을 갖는 Pseudoalteromonas 및 Vibrio 속 해양세균들의 분리 및 특성분석

  • Yoon, Young-Jun (Division of Bioengineering, Incheon National University) ;
  • Kim, Jung-Wan (Division of Bioengineering, Incheon National University)
  • Received : 2015.08.10
  • Accepted : 2015.12.04
  • Published : 2015.12.31

Abstract

As an effort to utilize alginate, 103 bacterial isolates that were positive for the alginate lyase activity were isolated from various clams and seawater samples collected in Incheon coastal area. Among them, 3 strains (M1-2-1, M6-1, and C8-15) were finally selected for further analysis based on their activities at higher levels than others. These isolates were all Gram-negative and rod shaped halophilic bacteria with motility. According to their physiological and biochemical properties as well as DNA sequence of their 16S rRNA genes, M1-2-1 and M6-1 were identified as a member of genus Pseudoalteromonas and C8-15 belonged to genus Vibrio. They exhibited the alginate degrading activity at the maximal level when they were cultured in APY broth for 6-8 h at $25^{\circ}C$. Both their growth and the enzyme activity were greatly enhanced when NaCl was added to the growth medium. The crude alginate lyases from the supernatants of the bacterial cultures showed the highest activity at $45^{\circ}C$ and pH 7.0-8.0. M1-2-1 and M6-1 produced 2.723 and 1.976 g/L of reducing sugar from alginate, respectively, suggesting that they have potential for commercial application.

알긴산의 응용을 위하여 인천지역에서 수집한 다양한 패류와 해수로부터 알긴산 분해효소 활성이 우수한 103개의 균주를 분리하고 그 중 M1-2-1, M6-1, C8-15 등 분해능이 가장 우수한 3균주를 선발하여 그 특성을 분석하였다. 이들은 모두 그람 음성 간균이었고, 운동성이 있는 호염성 세균이었다. 또한 생리 생화학적 특성 분석과 16S rRNA 유전자의 염기서열 분석으로 M1-2-1과 M6-1은 Pseudoalteromonas 속, C8-15은 Vibrio 속에 속하는 세균으로 동정되었다. 이들의 알긴산 분해효소 활성은 알긴산이 유일한 탄소원인 APY 배지에 접종하여 $25^{\circ}C$에서 6-8시간 배양했을 때 최대로 나타났고, NaCl을 가했을 때 생장 및 효소 활성 모두 증진되었다. 이 분리 균주들의 알긴산 분해 조효소들은 $45^{\circ}C$와 pH 7.0-8.0에서 가장 높은 활성을 나타냈으며, Pseudoalteromonas sp. M1-2-1과 M6-1 균주는 각각 2.7232 g/L와 1.976 g/L의 환원당 생성능을 보여, 산업적으로 활용 가능성이 높은 것으로 사료되었다.

Keywords

References

  1. Baxter, R.M. 1959. An interpretation of the effect of salts on the lactic dehydrogenase of Halobacterium salinarium. Can. J. Microbiol. 5, 47-57. https://doi.org/10.1139/m59-006
  2. Choi, D., Piao, Y.L., Shin, W.S., and Cho, H. 2009. Production of oligosaccharide from alginate using Pseudomonas agarovorans. Appl. Biochem. Biotechnol. 159, 438-452. https://doi.org/10.1007/s12010-008-8514-7
  3. Cote, G.L. and Krull, L.H. 1988. Characterization of the extracellular polysaccharide from Azotobacter chroococcum. Carbohydr. Res. 181, 143-152. https://doi.org/10.1016/0008-6215(88)84030-8
  4. Fisher, F.G. and Dorfel, H. 1955. The polyuronic acids of brown algae. Part I. Z. Physiol. Chem. 302, 186-203. https://doi.org/10.1515/bchm2.1955.302.1-2.186
  5. Gacesa, P. 1988. Alginates. Carbohydr. Polym. 8, 161-182. https://doi.org/10.1016/0144-8617(88)90001-X
  6. Gacesa, P. and Wusteman, F.S. 1990. Plate assay for simultaneous detection of alginate lyase and determination of substrate specificity. Appl. Environ. Microbiol. 56, 2265-2267.
  7. Guven, K.C., Ozsoy, Y., and Ulutin, O.N. 1991. Anticoagulant, fibrinolytic and antiaggregant activity of carrageenans and alginic acid. Botan. Marin. 34, 429-435.
  8. Holt, J.G., Krieg, N.R., Sneaht, P.H.A., Staley, J.T., and Williams, S.T. 1994. Bergey's Manual of Determinative Bacteriology, 9th, Williams Wilkins, USA.
  9. John, R.P., Anisha, G.S., Nampoothiri, K.M., and Pandey, A. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102, 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  10. Joo, D.S., Cho, S.Y., and Lee, E.H. 1993. Isolation of alginatedegrading bacteria and production of alginate degrading activities by the bacteria. Korean J. Microbiol. Biotechnol. 21, 207-213.
  11. Joo, D.S., Lee, J.S., Park, J.J., Cho, S.Y., Ahn, C.B., and Lee, E.H. 1995. Purification and characterization of the intracellular alginase from Vibrio sp. AL-145. Korean J. Appl. Microbiol. Biotechnol. 23, 432-438.
  12. Joo, D.S., Lee, J.S., Park, J.J., Cho, S.Y., Kim, H.K., and Lee, E.H. 1996. Preparation of oligosaccharides from alginic acid enzymatic hydrolysis. Korean J. Food Sci. Technol. 28, 146-151.
  13. Jung, J.Y., Hur, S.S., and Choi, Y.H. 1999. Studies on the efficient extraction process of alginic acid in sea tangle. Food Eng. Prog. 3, 90-97.
  14. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., Won, S., and Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  15. Kim, B.J., Ha, S.D., Lim, D.J., Song, C., and Kong, J.Y. 1998. Production of agarase from marine bacterium Bacillus cereus ASK202. Korean J. Biotechnol. Bioeng. 13, 524-529.
  16. Kim, J., Kim, Y., Kim, S., Kim, B., and Nam, S. 2011. Properties and industrial applications of seaweed polysaccharides-degrading enzymes from the marine microorganisms. Korean J. Microbiol. Biotechnol. 39, 189-199.
  17. Kim, H.K., Lee, J.C., Kang, N.H., Kim, S.H., Kim, J.G., and Chung, K.C. 2007. Purification and characterization of the extracellular alginate lyase from Streptomyces sp. MET 0515. J. Life Sci. 17, 625-633. https://doi.org/10.5352/JLS.2007.17.5.625
  18. Kim, D.E., Lee, E.Y., and Kim, H.S. 2009. Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5. Mar. Biotechnol. 11, 10-16. https://doi.org/10.1007/s10126-008-9114-9
  19. Kim, O.J., Lee, D., Lee, S., Lee, S.J., Do, H.J., Park, H.J., Kim, A., Lee, J., and Ha, J. 2010. Isolation and characterization of alginatedegrading Methyobacterium sp. HJM27. Korean J. Microbiol. Biotechnol. 38, 144-150.
  20. Kitamikado, M., Yamaguchi, K., Tseng, C., and Koabe, B. 1990. Method designed to detect alginate-degrading bacteria. Appl. Environ. Microbiol. 56, 2339-2940.
  21. Lee, B.H., Lee, S.B., and Kim, W.K. 2009a. Alginate fiber. Fiber Technol. Ind. 13, 21-24.
  22. Lee, J.H., Bae, M.J., Kim, Y., and Nam, S. 2009b. Identification and characterization of alginate lyase producing Pseudomonas sp. N7151-6. Korean J. Microbiol. Biotechnol. 37, 350-354.
  23. Lee, K.E., Lee, J.Y., and Kim, K. 2008. Effect of content of crop component on the bioethanol production. Korean J. Crop Sci. 53, 339-346.
  24. Lee, S., Oh, Y., Kim, D., Kwon, D., Lee, C., and Lee, J. 2011. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Appl. Biochem. Biotechnol. 164, 878-888. https://doi.org/10.1007/s12010-011-9181-7
  25. Li, L., Jiang, X., Guan, H., Wang, P., and Guo, H. 2011. Three alginate lyases from marine bacterium Pseudomonas fluorescens HZJ216: Purification and characterization. Appl. Biochem. Biotechnol. 164, 305-317. https://doi.org/10.1007/s12010-010-9136-4
  26. Li, S., Yang, X., Zhang, L., Yu, W., and Han, F. 2015. Cloning, expression, and characterization of a cold-adapted and surfactant-stable alginate lyase from marin bacterium Agarivorans sp. L11. J. Microbiol. Biotechnol. 25, 681-686. https://doi.org/10.4014/jmb.1409.09031
  27. Miller, G.L. 1959. Use of dinitrosalycylic acid reagent for determination by reducing sugar. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
  28. Nam, Y.D., Chang, H.W., Park, J.R., Kwon, H.Y., Quan, Z.X., Park, Z.X., Lee, J.S., Yoon, J.H., and Bae, J.W. 2007. Pseudoalteromonas marina sp. nov., a marine bacterium isolated from tidal flats of the Yellow Sea, and reclassification of Pseudoalteromonas sagamiensis as Algicola sagamiensis comb. nov. Int. J. Syst. Evol. Microbiol. 57, 12-18. https://doi.org/10.1099/ijs.0.64523-0
  29. Park, J.I., Woo, H.C., and Lee, J.H. 2008. Production of bio-energy from marine algae : status and perspectives. Korean Chem. Eng. Res. 46, 833-844.
  30. Powell, L.C., Sowedan, A., Khan, S., Wright, C.J., Hawkins, K., Onsoyen, E., Myrovold, R., Hill, K.E., and Thomas, D.W. 2013. The effect of alginate oligosaccharides on the mechanical properties of Gram-negative biofilms. Biofouling 29, 413-421. https://doi.org/10.1080/08927014.2013.777954
  31. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylo-genetic trees. Mol. Biol. Evol. 4, 406-425.
  32. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  33. Terakado, S., Ueno, M., Tamura, Y., Tada, N., Yoshinaga, M., Otsuka, K., Numabe, A., Kawabata, Y., Murota, I., Sato, N., and Uehara, Y. 2012. Sodium alginate oligosaccharides attenuate hypertension and associated kidney damage in Dahl salt-sensitive rats fed a high-salt diet. Clin. Exp. Hypertens. 34, 99-106. https://doi.org/10.3109/10641963.2011.618196
  34. Tomoo, S., Hiromasa, T., Yoshio, E., and Gacesab, P. 2001. Cloning, sequence analysis and expression of Pseudoalteromonas elyakovii IAM 14594 gene (alyPEEC) encoding the extracellular alginate lyase. Carbohydr. Res. 335, 11-21. https://doi.org/10.1016/S0008-6215(01)00198-7
  35. Ueno, M., Tamura, Y., Toda, N., Yoshinaga, M., Terakado, S., Otsuka, K., Numabe, A., Kawabata, Y., Murota, I., Sato, N., et al. 2012. Sodium alginate oligosaccharides attenuate hypertension in spontaneously hypertensive rats fed a low-salt diet. Clin. Exp. Hypertens. 34, 305-310. https://doi.org/10.3109/10641963.2011.577484
  36. Uo, M.H., Joo, D.S., and Cho, S.Y. 2006a. Screening and cultivation characterization of alginate degrading bacteria. J. Korean Soc. Food Sci. Nutr. 35, 109-114. https://doi.org/10.3746/jkfn.2006.35.1.109
  37. Uo, M.H., Joo, D.S., Cho, S.Y., and Min, T.S. 2006b. Purification and characterization of extracellular alginase produced by Bacillus lichenifomis AL-577. J. Korean Soc. Food Sci. Nutr. 35, 231-237. https://doi.org/10.3746/jkfn.2006.35.2.231
  38. Wong, T.Y., Preston, L.A., and Schiller, N.L. 2000. Alginate lyase: review of major sources and enzyme characteristics, structurefunction analysis, biological roles, and applications. Annu. Rev. Microbiol. 54, 289-340. https://doi.org/10.1146/annurev.micro.54.1.289
  39. Yan, G.L., Guo, Y.M., Yuan, J.M., Liu, D., and Zhang, B.K. 2011. Sodium alginate oligosaccharides from brown algae inhibit Salmonella enteritidis colonization in broiler chickens. Poult. Sci. 90, 1441-1448. https://doi.org/10.3382/ps.2011-01364
  40. Yokose, T., Nishikawa, T., Yamamoto, Y., Yamasake, Y., Yamaguchi, K., and Oda, T. 2009. Growth-promoting effect of alginate oligosaccharides on a unicellular marine microalga, Nannochloropsis oculata. Biosci. Biotechnol. Biochem. 73, 450-453. https://doi.org/10.1271/bbb.80692
  41. Yoon, Y.J., Im, K.H., Koh, Y.H., Kim, S.K., and Kim, J.W. 2003. Genotyping of six pathogenic Vibrio species based RFLP of 16S rDNAs for rapid identification. J. Microbiol. 41, 312-319.
  42. Zhu, B. and Yin, H. 2015. Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6, 125-131. https://doi.org/10.1080/21655979.2015.1030543