DOI QR코드

DOI QR Code

Plasma Monitoring by Multivariate Analysis Techniques

다변량 분석기법을 통한 플라즈마 공정 모니터링 기술

  • 장해규 (성균관대학교 나노과학기술학과) ;
  • 고경범 (성균관대학교 화학공학부) ;
  • 이호녕 (성균관대학교 반도체디스플레이공학과) ;
  • 채희엽 (성균관대학교 화학공학부)
  • Published : 2015.12.30

Abstract

Plasma diagnosis and multivariate analysis techniques for plasma processes are reviewed. The principles and applications of optical emission spectroscopy (OES) and VI probe are discussed briefly. The research results of principal component analysis (PCA), one of the widely used multivariate analysis techniques for plasma process monitoring is discussed in this article.

Keywords

References

  1. R. Mohan Sankaran (Ed.), Plasma processing of nanomaterials (CRC Press, Florida, 2012), pp.1-54.
  2. S. J. Pearton. and D. P. Norton, Plasma Process. Polym. 2, 16 (2005) https://doi.org/10.1002/ppap.200400035
  3. P. Mishra, Harsh and S. S. Islam, Superlattice Microst. 64, 399 (2013) https://doi.org/10.1016/j.spmi.2013.10.010
  4. J. M. Stilahn, K. J Trevino and E. R. Fisher, Annu. Rev. Anal. Chem. 1, 261 (2008) https://doi.org/10.1146/annurev.anchem.1.031207.112953
  5. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley-Interscience, New Jersey, 2005), pp. 387-534.
  6. A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications (IEEE PRESS, New York, 1994), pp. 114-150.
  7. G. S. Selwyn, AVS monograph series: Optical diagnostic techniques for plasma processing, edited by Woody weed (AVS Press, New Work, 1993), pp 27-80.
  8. K. Han, E. S. Yoon, J. Lee, H. Chae, K. H. Han and K. J. Park, Ind. Eng. Chem. Res. 47, 3907 (2008) https://doi.org/10.1021/ie070930s
  9. K. Ukai and K. Hanazawa, J. Vac. Sci. Technol. 16, 385 (1979) https://doi.org/10.1116/1.569956
  10. G Fortunato, J. Phys. E Sci. Instrum., 20, 1051 (1987) https://doi.org/10.1088/0022-3735/20/8/020
  11. V. Patel, B. Singh and J. H. Thomas III Appl. Phys. Lett. 61, 1912 (1992) https://doi.org/10.1063/1.108361
  12. M. N. A. Dewan, P. J. McNally, T. Perova and P. A. F. Herbert, Microelectron. Eng. 65, 25 (2003) https://doi.org/10.1016/S0167-9317(02)00727-X
  13. P. Dubreuil and D. Belharet, Microelectron. Eng. 87, 2275 (2010) https://doi.org/10.1016/j.mee.2010.03.003
  14. H. L. Maynard, E. A. Rietman, J. T. C. Lee and D. E. Ibbotson, J. Electrochem. Soc. 143, 2029 (1996) https://doi.org/10.1149/1.1836944
  15. M. Kanoh, M. Yamage and H. Takada, Jpn. J. Appl. Phys. 40, 1457 (2001) https://doi.org/10.1143/JJAP.40.1457
  16. M. A, Sobolewski, J. Vac. Sci. Technol. A, 24, 1892 (2006) https://doi.org/10.1116/1.2335862
  17. M. A. Sobolewski and D. L. Lahr, J. Vac. Sci. Technol. A, 30, 051303 (2012) https://doi.org/10.1116/1.4737615
  18. H. Jang, J. Nam, C. K. Kim and H. Chae, Plasma Process. Polym. 10, 850 (2013)
  19. K. Han, K. J. Park, H. Chae and E. S. Yoon, Korean J. Chem. Eng. 25, 13 (2008) https://doi.org/10.1007/s11814-008-0003-8
  20. S. J. Qin, J. Chemometr. 17, 480 (2003) https://doi.org/10.1002/cem.800
  21. A. J. Izenman, Modern Multivariate Statistical Techniques (Springer Science + Business Media, New York, 2008), pp. 107-313, 407-504, 597-632