DOI QR코드

DOI QR Code

Analysis of Integrated GPS/GLONASS/BDS Positioning Accuracy using Low Cost Receiver

저가형 수신기를 이용한 GPS/GLONASS/BDS 통합 측위 정확도 분석

  • Tae, Hyun U (Dept. of Geoinformatic Engineering, Inha University) ;
  • Park, Kwan Dong (Dept. of Geoinformatic Engineering, Inha University) ;
  • Kim, Mi So (Dept. of Geoinformatic Engineering, Inha University)
  • 태현우 (인하대학교 공간정보공학과) ;
  • 박관동 (인하대학교 공간정보공학과) ;
  • 김미소 (인하대학교 공간정보공학과)
  • Received : 2015.11.11
  • Accepted : 2015.12.15
  • Published : 2015.12.31

Abstract

This paper explains major considerations for integrated GPS/GLONASS/BDS positioning, and then analyzes integrated GNSS positioning accuracies based on low-cost receivers in open-sky and poor reception environments. In an open-sky environment, horizontal RMSE of the integrated system positioning is about 1.2m. It shows improved result compared with single system positioning, the improvement ratio was 17-55%. In poor reception environments, we sometimes could not do positioning because the number of visible satellites gets below four. In an integrated positioning mode, the number of visible satellites was always higher than four, allowing us to find positions all the time. The horizontal RMSE of the integrated system positioning in poor reception environments is about 6.4m. Compared with single system positioning;the integrated system positioning shows better performance and the improvement ratio was 8-47% for the horizontal directions.

본 연구에서는 GPS/GLONASS/BDS 통합 측위를 수행하기 위해 고려해야 할 사항을 소개하였으며, 저가형 수신기를 통해 개활지 환경과 난수신 환경에서의 통합 측위의 정확도를 분석하였다. 개활지 환경에서는 통합 측위 시 수평 RMSE가 1.2m로 단일 시스템만을 이용한 측위에 비해 수평 정확도가 17-55%만큼 향상되었으며 편향이 개선되어 높은 측위 성능을 나타내는 것을 확인하였다. 난수신 환경에서의 가시 위성 개수를 파악한 결과 단일 시스템을 이용하여 측위를 할 때에는 가시 위성의 개수가 4개 미만이 되어 측위가 되지 않는 경우가 발생했으나, 통합 측위를 할 때에는 가시 위성 개수가 항상 4개 이상이 되어 측위가 되지 않는 경우가 발생하지 않았다. 난수신 환경에서 통합 측위의 수평 RMSE는 6.4m로 단일 시스템만을 이용하여 측위를 수행했을 때보다 8-47%만큼 수평 정확도가 향상되는 것을 확인하였다.

Keywords

References

  1. Bazlov, Y., Galazin, V., Kaplan, B., Maksimov, V. and Roguzin, V., 1999, GLONASS to GPS: A new coordinate transformation, GPS world, pp. 54-58.
  2. Dou, J., 2015, Performance of GPS and partially deployed BeiDou for real-time kinematic positioning in Western Canada, Master's Thesis, University of Calgary, pp. 19-20.
  3. Habrich, H., 1999, Geodetic applications of the global navigation satellite system(GLONASS) and of GLONASS/GPS combinations, Doctoral Thesis, University of Berne.
  4. CSNO, 2013, BeiDou Navigation Satellite System Signal In Space Interface Control Document - Open Service Signal.
  5. RISDE, 2008, GLONASS Interface Control Document(Version 5.1).
  6. Ineichen, D., Rothacher, M., Springer, T. and Beutler, G., 2000, Computation of precise GLONASS orbits for IGEX-98, Proc. of IAGS 2000, International Association of Geodesy Symposia, Vol. 121, pp. 26-31.
  7. Lewandowski, W. and Arias, E. F., 2011, GNSS times and UTC, Metrologia, Vol. 48, No. 4, pp. 219-224. https://doi.org/10.1088/0026-1394/48/3/017

Cited by

  1. Analysis of Multi-Differential GNSS Positioning Accuracy in Various Signal Reception Environments vol.7, pp.1, 2018, https://doi.org/10.11003/jpnt.2018.7.1.15