DOI QR코드

DOI QR Code

Trends in Biomimetic Vision Sensor Technology

생체모방 시각센서 기술동향

  • Lee, Tae-Jae (School of Electrical and Computer Engineering, Automation and Systems Research Institute (ASRI), Seoul National University) ;
  • Park, Yun-Jae (School of Electrical and Computer Engineering, Automation and Systems Research Institute (ASRI), Seoul National University) ;
  • Koo, Kyo-In (School of Electrical Engineering, University of Ulsan) ;
  • Seo, Jong-Mo (School of Electrical and Computer Engineering, Automation and Systems Research Institute (ASRI), Seoul National University) ;
  • Cho, Dong-Il Dan (School of Electrical and Computer Engineering, Automation and Systems Research Institute (ASRI), Seoul National University)
  • 이태재 (서울대학교 전기정보공학부, 자동화 시스템공동연구소, 국방생체모방자율로봇 특화연구센터) ;
  • 박윤재 (서울대학교 전기정보공학부, 자동화 시스템공동연구소, 국방생체모방자율로봇 특화연구센터) ;
  • 구교인 (울산대학교 전기공학부, 국방생체모방자율로봇 특화연구센터) ;
  • 서종모 (서울대학교 전기정보공학부, 자동화 시스템공동연구소, 국방생체모방자율로봇 특화연구센터) ;
  • 조동일 (서울대학교 전기정보공학부, 자동화 시스템공동연구소, 국방생체모방자율로봇 특화연구센터)
  • Received : 2015.06.09
  • Accepted : 2015.11.09
  • Published : 2015.12.01

Abstract

In conventional robotics, charge-coupled device (CCD) and complementary metal-oxide-semiconductor (CMOS) cameras have been utilized for acquiring vision information. These devices have problems, such as narrow optic angles and inefficiencies in visual information processing. Recently, biomimetic vision sensors for robotic applications have been receiving much attention. These sensors are more efficient than conventional vision sensors in terms of the optic angle, power consumption, dynamic range, and redundancy suppression. This paper presents recent research trends on biomimetic vision sensors and discusses future directions.

Keywords

References

  1. Y. J. Park, T. J. Lee, K. I. Koo, J. M. Seo, and D. I. Cho, "Research trends on biomimetic vision sensors," Proc. of ICROS Annual Conference (in Korean), Daejeon, Korea, pp. 329-330, 2015.
  2. J. Nakamura, "Image sensors and signal processing for digital still cameras," Boca Raton, FL: CRC Press, 2005.
  3. G. C. Holst, "CCD Arrays, cameras, and displays," Bellingham, WA: SPIE Press, 1998.
  4. H. R. Kim, X. N. Cui, J. H. Lee, S. J. Lee, and H. I. Kim, "Person-following of a mobile robot using a complementary tracker with a camera-laser scanner," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 20, no. 1, pp. 78-86, 2014. https://doi.org/10.5302/J.ICROS.2014.13.1954
  5. Y. S. Kim and D. H. Hwang, "INS/vision integrated navigation system considering error characteristics of landmark-based vision navigation," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 19, no. 2, pp. 95-101, 2013. https://doi.org/10.5302/J.ICROS.2013.19.2.095
  6. C. Mead and I. Mohammed, Analog VLSI and Neural Systems, 1st Ed., Addison Wesley, Boston, 1989.
  7. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. H. Jung, K. J. Choi, Z. Liu, H. S. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, "Digital cameras with designs inspired by the arthropod eye," Nature, vol. 497, no. 7447, pp. 95-99, 2013. https://doi.org/10.1038/nature12083
  8. Y. Shiuan and G. D. J. Su, "Fabrication of PDMS microlens array on spherical surface using multi-replication process," Journal of Signal Processing System, vol. 24, no. 1, 015016, 2014.
  9. C. Huang and H. Jiang, "Bio-inspired wide-angle broadspectrum cylindrical lens based on reflections from micro-mirror array on a cylindrical elastomeric membrane," Micromachines, vol. 5, no. 2, pp. 373-384, 2014. https://doi.org/10.3390/mi5020373
  10. N. Franceschini, "Visual guidance based on optic flow," Journal of Physiology-Paris, vol. 98, no. 1, pp. 281-292, 2004. https://doi.org/10.1016/j.jphysparis.2004.06.002
  11. P. S. Bhagavatula, C. Claudianos, M. R. Ibbotson, and M. V. Srinivasan, "Optic flow cues guide flight in birds," Current Biology, vol. 21, no. 21, pp. 1794-1799, 2011. https://doi.org/10.1016/j.cub.2011.09.009
  12. M. V. Srinivasan, "Visual control of navigation in insects and its relevance for robotics," Current Opinion in Neurobiology, vol. 21, no. 4, pp. 535-543, 2011. https://doi.org/10.1016/j.conb.2011.05.020
  13. D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Bruckner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L'Eplattenier, F. Recktenwald, H. A. Mallot, N. Franceschini, "Miniature curved artificial compound eyes," Proc. of the National Academy of Sciences, vol. 110, no. 23, pp. 9267-9272, 2013. https://doi.org/10.1073/pnas.1219068110
  14. R. Pericet-Camara, M. Dobrzynski, R. Juston, S. Viollet, R. Leitel, H. Mallot, and D. Floreano, "An artificial elementary eye with optic flow detection and compositional properties," Journal of The Royal Society Interface, vol. 12, no. 109, 20150414, 2015. https://doi.org/10.1098/rsif.2015.0414
  15. S. Park, J. Cho, K. Lee, and E. Yoon, "7.2 243.3pJ/pixel bioinspired time-stamp-based 2D optic flow sensor for artificial compound eyes," Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, pp. 126-127, 2014.
  16. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array," Optics Express, vol. 12, no. 11, pp. 2494-2500, 2004. https://doi.org/10.1364/OPEX.12.002494
  17. L. Wang, H. Liu, W. Jiang, R. Li, F. Li, Z. Yang, L. Yin, Y. Shi, and B. Chen, "Capillary number encouraged the construction of smart biomimetic eyes," Journal of Materials Chemistry C, 2015.
  18. P. Lichtsteiner, C. Posch, and T. Delbruck, "A $128{\times}128$ 120dB 30mW asynchronous vision sensor that responds to relative intensity change," International Solid-State Circuits Conference Digest of Technical Papers, pp. 508-509, 2006.
  19. P. Lichtsteiner, C. Posch, and T. Delbruck, "A $128{\times}128$ 120dB 15us latency asynchronous temporal contrast vision sensor," IEEE Journal of Solid State Circuits, vol. 43, no. 2, pp. 566-576, 2008. https://doi.org/10.1109/JSSC.2007.914337
  20. C. Posch, D. Matolin, and R. Wohlgenannt, "An asynchronous time-based image sensor," Circuits and Systems, ISCAS 2008. IEEE International Symposium on, pp. 2130-2133, 2008.
  21. C. Christoph, M. Daniel, and W. Rainer, "A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS," Solid-State Circuits, IEEE Journal of, 46.1, pp. 259-275, 2011. https://doi.org/10.1109/JSSC.2010.2085952
  22. C. Brandli, R. Berner, M. Yang, S. Liu, and T. Delbruck, "A 240 x 180 130 dB 3 us latency global shutter spatiotemporal vision sensor," IEEE Journal of Solid-State Circuits., vol. 49, no. 10, pp. 2333-2341, 2014. https://doi.org/10.1109/JSSC.2014.2342715
  23. R. Berner, C. Brandli, M. Yang, S. C. Liu, and T. Delbruck, "A $240{\times}180$ 10mW 12us latency sparse-output vision sensor for mobile applications," VLSI Circuits (VLSIC), 2013 Symposium on. IEEE, pp. 186-187, 2013.
  24. Z. Fan, J. C. Ho, Z. A. Jacobson, H. Razavi, and A. Javey, "Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry," Proc. of the National Academy of Sciences, vol. 105, no. 32, pp. 11066-11070, 2008. https://doi.org/10.1073/pnas.0801994105
  25. S. M. Lee, S. W. Jung, S. K. Park, J. H. Ahn, S. J. Hong, H. J. Yoo, M. H. Lee, and D. I. Cho, "Fabrication and evaluation of silicon nanowire photodetectors on flexible substrate for retinal prosthetic system," Sensors and Materials, vol. 24, no. 4, pp. 205-220, 2012.
  26. S. M. Lee, S. W. Jung, J. H. Ahn, H. J. Yoo, S. J. Oh, and D. I. Cho, "Microelectrode array with integrated nanowire FET switches for high-resolution retinal prosthetic systems," IOP Journal of Micromechanics and Microengineering, vol. 24, no. 7, pp. 075018, 2014. https://doi.org/10.1088/0960-1317/24/7/075018