Effects of the Milking System and Supplemental Fat Feeding on Milk and Milk Fat Characteristics

착유방식 및 지방 보충급여가 원유 및 지방특성에 미치는 효과

  • Moon, Ju Yeon (Dept. of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Jin-Sung (Dept. of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Chang, Kyeong-Man (Environment Science, Hankyong National University) ;
  • Park, Seong-Min (National Institute of Animal Science, R.D.A.) ;
  • Park, Seung-Yong (Dept. of Animal Science, Cheonan Yonam College) ;
  • Jung, Mun Yhung (Dept. of Food Science and Culinary Arts, Woosuk University) ;
  • Son, Yong-Suk (Dept. of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • 문주연 (고려대학교 생명공학부) ;
  • 이진성 (고려대학교 생명공학부) ;
  • 장경만 (국립한경대학교 동물생명환경과학부) ;
  • 박성민 (국립축산과학원) ;
  • 박승용 (천안연암대학 축산계열) ;
  • 정문웅 (우석대학교 외식산업조리학과) ;
  • 손용석 (고려대학교 생명공학부)
  • Received : 2015.09.13
  • Accepted : 2015.09.20
  • Published : 2015.09.30

Abstract

This study was carried out to investigate the effects of different milking systems (AMS, automatic milking system and CMS, conventional milking system) and of supplemental fat feeding on milk composition and milk fat characteristics. The composition, MFG (milk fat globule) size, fatty acids (FAs), and free fatty acids (FFAs) of the milk from 4 AMS and 4 CMS dairy farms were analyzed on the basis of the milking system and feeding of protected fat. The milking system did not affect milk composition, MFG size, and milk FAs, but FFA content of AMS milk were significantly higher than that of CMS milk. Feeding of protected fat resulted in the production of milk much higher in LCFAs (long chain FAs); however, the milk composition was not affected by fat supplementation. Cows administered protected fat supplements produced milk containing MFGs with a large average diameter.

AMS와 CMS 및 보호지방의 급여 여부가 우유 성분과 유지방 특성에 미치는 영향을 조사하기 위하여 본 연구를 실시하였다. 착유방식과 보호지방 급여 여부에 따라 AMS 및 CMS 목장을 각 4개소씩 선정하여 월 1회 집합유 원유시료를 채취하였으며, 총 5개월간 유성분, 유지방구(MFG) 크기, 지방산 및 유리지방산 조성을 분석하였다. 착유방식에 따른 일반 유성분, MFG 크기, 지방산 조성의 유의적 차이는 관찰되지 않았으나, AMS로 착유된 우유의 유리지방산 함량이 CMS로 착유된 우유에 비해 유의적으로(p<0.05) 높았으며, 이는 AMS 의 착유 횟수가 CMS에 비해 더 많았기 때문인 것으로 판단된다. 보호지방을 급여한 농장의 우유를 비급여 농장과 비교하였을 때 유성분에는 차이가 없었으나 장쇄지방산(LCFA) 함량이 더 높은 것으로 나타났으며, 유지방구의 크기 또한 증가하는 경향을 보였는데 이는 급여한 보호지방의 주요지방산인 LCFA가 유지방으로 전이되었기 때문으로 해석된다. 또한 공시한 모든 AMS 목장에서 원유의 산패문제는 발생하지 않았는데, 유리지방산 함량이 CMS에 비해 유의적으로 높았지만 산패를 일으킬 정도로 높은 수준은 아니었던 것으로 판단된다. 이상의 결과를 바탕으로 할 때 AMS는 유성분 및 유지방 특성의 측면에서 CMS 대비 주목할 만한 차이를 보이지 않았으며 보호지방의 급여는 유지방구 크기 및 장쇄지방산 농도에 영향을 미치므로 향후 목장형 유가공을 실시할 경우 이를 응용할 여지가 있을 것으로 사료된다.

Keywords

References

  1. Abeni, F. D., Calza, F. L., Giangiacomo, R. and Pirlo, G. 2005. Milk quality and automatic milking: Fat globule size, natural creaming, and lipolysis. J. Dairy Sci. 88:3519-3529. https://doi.org/10.3168/jds.S0022-0302(05)73037-X
  2. Abeni, F., Terzano, M. G., Speroni, M., Migliorati, L., Capelletti, M., Calza, F., Bianchi L. and Pirlo, G. 2008. Evaluation of milk enzymes and electrolytes, plasma metabolites and oxidative status in twin cows milked in an automatic milking system or twice daily in a conventional milking parlor. J. Dairy Sci. 91:3372-3384. https://doi.org/10.3168/jds.2008-1039
  3. Attaie, R. and Richter, R. L. 2000. Size distribution of fat globules in goat milk. J. Dairy Sci. 83:940-944. https://doi.org/10.3168/jds.S0022-0302(00)74957-5
  4. Cecchi, G., Martini, M., Scolozzi, C., Leotta, R. and Verita, P. 2003. Milk fat globules in different dairy cattle breed. Part 2: relationship to fatty acid composition. Ital. J. Anim. Sci. 2:275-227. https://doi.org/10.4081/ijas.2003.275
  5. De Jong, C. and Badings, H. T. 1990. Determination of free fatty acids in milk and cheese. Procedures for extraction, clean up and capillary gas chromatographic analysis. J. High Resolution Chromatography 13:94-98. https://doi.org/10.1002/jhrc.1240130204
  6. Huppertz, T. and Kelly, A. L. 2006. Physical chemistry of milk fat globules. In: Advanced dairy chemistry II. Lipid (P. F. Fox and P. L. H. McSweeney, eds.) pp. 173-212, Springer Science+Business Media, Inc., New York.
  7. Klungel, G. G., Slaghuis, B. A. and Hogeveen, H. 2000. The effect of the introduction of automatic milking systems on milk quality. J. Dairy Sci. 83:1998-2003. https://doi.org/10.3168/jds.S0022-0302(00)75077-6
  8. Martini, M., Scolozzi, C. and Cecchi, F. 2005a. Studio delle correlazioni tra le caratteristiche morfometriche del globule di grasso e la qualita del lattta di bufala. Sci. Tecn. Latt. Cas. 54:197-204.
  9. Martini, M., Scolozzi, C., Ceccgi, F., Salari, F. and Verjta, P. 2005b. Study on chemical and fatty acid modification of cow's in relation to fat globules diameter. Ital. J. Anim. Sci. 4:230-232. https://doi.org/10.4081/ijas.2005.2s.230
  10. Menard O., Ahmad, S., Rousseau, F., Briard-Bion, V., Gaucheron, F. and Lopez, C. 2010. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 120:544-551. https://doi.org/10.1016/j.foodchem.2009.10.053
  11. Michalski, M. C., Gassi, J. Y., Famelart, M. H., Leconte, N., Garmier, B., Michel, F. and Briard, V. 2003. The size of native milk fat globules affects physico-chemical and sensory properties of Camembert cheese. Lait 83:131-143. https://doi.org/10.1051/lait:2003003
  12. Mollenhorst, H., Hidayat, M. M., van den Broek., J., Neijenhuis, F. and Hogeveen, H. 2011. The relationship between milking interval and somatic cell count in automatic milking systems. J. Dairy Sci. 94:4531-4537. https://doi.org/10.3168/jds.2011-4244
  13. Mun, J. Y., Chang, K. M., Nam, I. S., Park, S. M., Oh, N. S. and Son, Y. S. 2014. Effects of automatic milking systems on raw milk quality and milk fat properties with or without feeding protected fat. Korea. J. Dairy Sci. Technol. 32:63-70.
  14. Parodi, P. 2004. Milk fat in human nutrition. Australian Journal of Dairy Technology 59:3-59.
  15. Ramussen, M. D., Bjerring, M., Justesen, P. and Jepsen, L. 2002. Milk quality on danish farms with automatic milking systems. J. Dairy Sci. 85:2869-2878. https://doi.org/10.3168/jds.S0022-0302(02)74374-9
  16. Santos, M. V., Ma, Y., Caplan, Z. and Barbano, D. M. 2003. Sensory threshold of off-flavors caused by proteolysis and lipolysis in milk. J. Dairy Sci. 89:1601-1607.
  17. St-Gelais, D., Passet, C. A., Hahe, S. and Roy, P. 1997. Production of low-fat cheddar cheese from low and high mineral retentate powders and different fractions of milk fat globules. Int. Dairy J. 7:733-741. https://doi.org/10.1016/S0958-6946(97)00084-8
  18. Timmen, H. and Patton, S. 1988. Milk fat globules: Fatty acid composition, size and in vivo regulation of fat liquidity. Lipid. 23:685-689. https://doi.org/10.1007/BF02535669
  19. Wiking, L., Nielsen, J. H., Bavius, A. K., Edvardsson, A. and Svennersten-Sjaunja, K. 2006. Impact of milking frequency on the level of free fatty acids in milk, fat globule size and fatty acid composition. J. Dairy Sci. 89:1004-1009. https://doi.org/10.3168/jds.S0022-0302(06)72166-X
  20. Wiking, L., Bjorck, L. and Nielsen, J. H. 2003. Influence of feed composition on stability of fat globules during pumping of raw milk. Int. Dairy J. 13:797-803. https://doi.org/10.1016/S0958-6946(03)00110-9
  21. Wiking, L., Stagested, J., Bjorck, L. and Nielsen, J. H. 2004. Milk fat globule size is affected by fat production in dairy cows. Int. Dairt J. 14:909-913. https://doi.org/10.1016/j.idairyj.2004.03.005