Rapid Detection of Viable Cronobacter sakazakii using Propidium Monoazide (PMA) in Combination with Real-Time qPCR

Propidium Monoazide(PMA)와 Real-Time qPCR을 이용한 살아있는 Cronobacter sakazakii의 신속검출

  • Hwang, Dae-Geun (KU Center for Food Safety and College of Veterinary Medicine, Konkuk University) ;
  • Chon, Jung-Whan (KU Center for Food Safety and College of Veterinary Medicine, Konkuk University) ;
  • Kim, Hyun-Sook (Dept. of Food & Nutrition, College of Human Ecology, Hanyang University) ;
  • Kim, Hong-Seok (KU Center for Food Safety and College of Veterinary Medicine, Konkuk University) ;
  • Kim, Dong-Hyeon (KU Center for Food Safety and College of Veterinary Medicine, Konkuk University) ;
  • Song, Kwang-Young (KU Center for Food Safety and College of Veterinary Medicine, Konkuk University) ;
  • Yim, Jin-Hyuk (KU Center for Food Safety and College of Veterinary Medicine, Konkuk University) ;
  • Kim, Young-Ji (KU Center for Food Safety and College of Veterinary Medicine, Konkuk University) ;
  • Kang, Il-Byung (KU Center for Food Safety and College of Veterinary Medicine, Konkuk University) ;
  • Seo, Kun-Ho (KU Center for Food Safety and College of Veterinary Medicine, Konkuk University)
  • 황대근 (건국대학교 수의과대학 및 KU 식품안전연구소) ;
  • 천정환 (건국대학교 수의과대학 및 KU 식품안전연구소) ;
  • 김현숙 (한양대학교 생활과학대학 식품영양학과) ;
  • 김홍석 (건국대학교 수의과대학 및 KU 식품안전연구소) ;
  • 김동현 (건국대학교 수의과대학 및 KU 식품안전연구소) ;
  • 송광영 (건국대학교 수의과대학 및 KU 식품안전연구소) ;
  • 임진혁 (건국대학교 수의과대학 및 KU 식품안전연구소) ;
  • 김영지 (건국대학교 수의과대학 및 KU 식품안전연구소) ;
  • 강일병 (건국대학교 수의과대학 및 KU 식품안전연구소) ;
  • 서건호 (건국대학교 수의과대학 및 KU 식품안전연구소)
  • Received : 2015.08.03
  • Accepted : 2015.09.15
  • Published : 2015.09.30

Abstract

While various foodborne pathogenic bacteria can be detected more rapidly via polymerase chain reaction than via conventional plating methods, it is impossible to distinguish between viable and dead cells in DNA-based assays. Hence, propidium monoazide (PMA) treatment has been introduced to detect living cells. The purpose of this study is to evaluate the applicability of the PMA treatment and real-time qPCR method for the detection of Cronobacter sakazakii and to compare it to that of plate counting. Based on our positive results, we suggest the use of PMA treatment and real-time qPCR for the detection of viable Cronobacter sakazakii in various food sources and an update of the Korean Food Code.

Keywords

References

  1. Commission Regulation (EC). 2007. No 1441/2007 of 5 December 2007 amending regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. 2007. Official Journal of the European Union. L 322/12-29.
  2. De Vos, M. M. and Nelis, H. J. 2006. An improved method for the selective detection of fungi in hospital waters by solid phase cytometry. J. Microbiol. Methods 67:557-565. https://doi.org/10.1016/j.mimet.2006.05.020
  3. Food and Agriculture Organizaqtion/World Health Organization. 2004. Joint FAO/WHO workshop on Enterobacter sakazakii and other microorganisms in powdered infant formula. Available from: hppt://www.who.int/foodsafety/pub lications/feb.2004/en/print.html. Accessed September 17, 2015.
  4. Gurtler, J. B., Kornacki, J. L. and Beuchat, L. R. 2005. Enterobacter sakazakii: A coliform of increased concern to infant health. Int. J. Food Microbiol. 104:1-34. https://doi.org/10.1016/j.ijfoodmicro.2005.02.013
  5. Iversen, C. and Forsythe, S. J. 2003. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci. Technol. 11:443-454.
  6. Iversen, C., Mullane, N., McCardell, B., Tall, B. D., Lehner, A., Fanning, S., Stephan, R. and Joosten, H. 2008. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int. J. System Evol. Microbiol. 58:1442-1447. https://doi.org/10.1099/ijs.0.65577-0
  7. Joker, R. N., Norholm, T. and Siboni, K. E. 1965. A case of neonatal meningitis caused by a yellow Enterobacter. Danish Med. Bull. 12:128-130.
  8. Jung, M. K. and Park, J. H. 2006. Prevalence and thermal stability of Enterobacter sakazakii from unprocessed readyto- eat agricultural products and powdered infant formulas. Food Sci. Biotechnol. 15:152-157.
  9. Kim, S. Y., Lee, S. J., Kim, E. S., Seo, E. G., Song, Y. J., Jung, I. Y. 2008. Selective detection of viable Enterococcus faecalis using propidium monoaide in combination with realtime PCR. J. Korean Academy of Conservative Dentistry 33:537-544. https://doi.org/10.5395/JKACD.2008.33.6.537
  10. Kuzina, L. V., Peloquin, J. J., Vacek, D. C. and Miller, T. A. 2001. Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Curr. Microbiol. 42:290-294.
  11. Liu, Y. and Mustapha, A. 2014. Detection of viable Escherichia coli O157:H7 in ground beef by propidium monoazide real-time PCR. International J. Food Micro. 170:48-54. https://doi.org/10.1016/j.ijfoodmicro.2013.10.026
  12. Muytjens, H. L., van der Ros-van de Repe, J. and van Druten, H. A. M. 1984. Enzymatic profiles of Enterobacter sakazakii and related species with special reference to the alpha glucosidase reaction and reproducibility of the test system. J. Clin. Microbiol. 20:684-686.
  13. Nocker, A. and Camper, A. K. 2006. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl. Environ. Microbiol. 72: 1997-2004. https://doi.org/10.1128/AEM.72.3.1997-2004.2006
  14. Nocker, A., Cheung, C. Y. and Camper, A. K. 2006. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods 67:310-320. https://doi.org/10.1016/j.mimet.2006.04.015
  15. Nocker, A., Sossa, K. E. and Camper, A. K. 2007. Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J. Microbiol. Methods 70:252-260. https://doi.org/10.1016/j.mimet.2007.04.014
  16. Nocker, A., Sossa-Fernandez, P., Burr, M. D. and Camper, A. K. 2007. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl. Environ. Microbiol. 73:5111-1117. https://doi.org/10.1128/AEM.02987-06
  17. Seo, K. H. and Brackett, R. E. 2005. Rapid, specific detection of Enterobacter sakazakii in Infant formula using a real-time PCR assay. J. Food Prot. 68:59-63. https://doi.org/10.4315/0362-028X-68.1.59
  18. Teramoto, S., Tanabe, Y., Okano, E., Nagashima, T., Kobayashi, M. and Etoh, Y. 2010. A first fatal neonatal case of Enterobacter sakazakii infection in Japan. Pediatr. Int. 52:312-313. https://doi.org/10.1111/j.1442-200X.2010.03030.x
  19. Williams, J. M., Trope, M., Caplan, D. J. and Shugars, D. C. 2006. Detection and quantitation of E. faecalis by realtime PCR (qPCR), reverse transcription-PCR (RT-PCR), and cultivation during endodontic treatment. J. Endod. 32:715-721. https://doi.org/10.1016/j.joen.2006.02.031
  20. Young, G., Turner, S., Davies, J. K., Sundqvist, G. and Figdor, D. 2007. Bacterial DNA persists for extended periods after cell death. J. Endod. 33:1417-1420. https://doi.org/10.1016/j.joen.2007.09.002