Acid Stress Response of Lactobacillus rhamnosus GG in Commercial Yogurt

발효유제품에서 Lactobacillus rhamnosus GG의 생육 특성

  • Bang, Miseon (Division of Animal Science, Chonnam National University) ;
  • Jeong, Anna (Division of Animal Science, Chonnam National University) ;
  • Park, Dong-June (Korea Food Research Institute) ;
  • Lim, Kwang-Sei (R & D Center, Maeil Dairy Co. Ltd.) ;
  • Oh, Sejong (Division of Animal Science, Chonnam National University)
  • 방미선 (전남대학교 동물자원학부) ;
  • 정안나 (전남대학교 동물자원학부) ;
  • 박동준 (한국식품연구원) ;
  • 임광세 ((주)매일유업 중앙연구소) ;
  • 오세종 (전남대학교 동물자원학부)
  • Received : 2015.02.01
  • Accepted : 2015.03.26
  • Published : 2015.03.31

Abstract

Yogurt is a product of the acidic fermentation of milk, which affects the survival of lactic acid bacteria (LAB). The aim of this present study was to examine the survival and acid stress response of Lactobacillus rhamnosus GG to low pH environment. The survival of LAB in commercial yogurt was measured during long-term storage. The enumeration of viable cells of LAB was determined at 15-day intervals over 52-weeks at $5^{\circ}C$. L. acidophilus, L. casei, and Bifidobacterium spp. showed low viability. However, L. rhamnosus GG exhibited excellent survival throughout the refrigerated storage period. At the end of 52-weeks, L. rhamnosus GG survived 7.0 log10 CFU/mL. $F_0F_1$ ATPase activity in L. rhamnosus GG at pH 4.5 was also evaluated. The ATPase activities of the membranes were higher when exposed at pH 4.5 for 24 h. The survival of L. rhamnosus GG was attributable to the induction in $F_0F_1$ ATPase activity. In addition, the mRNA expression levels of acid stress-inducible genes at low pH were investigated by qRT-PCR. clpC and clpE genes were up-regulated after 1 h, and atpA and dnaK genes were up-regulated after 24 h of incubation at pH 4.5. These genes could enhance the survival of L. rhamnosus GG in the acidic condition. Thus, the modulation of the enzymes or genes to assist the viability of LAB in the low pH environment is thought to be important.

Keywords

References

  1. Alander, M., Satokari, R., Korpela, R., Saxelin, M., Vilpponen-Salmela, T., Mattila-Sandholm, T. and von Wright, A. 1999. Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl. Environ. Microbiol. 65:351-354. https://doi.org/10.1128/AEM.65.1.351-354.1999
  2. Arena, M. E., Saguir, F. M. and Manca de Nadra, M. C. 1999. Arginine, citrulline and ornithine metabolism by lactic acid bacteria from wine. Food Microbiology 47:203-209. https://doi.org/10.1016/S0168-1605(99)00004-5
  3. Bender, G. R. and Marquis, R. E. 1987. Membrane ATPases and acid tolerance of Actinomyces viscosus and Lactobacillus casei. Applied and Environmental Microbiology 53:2124-2128.
  4. Booth, I. R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol Rev. 49:359-378.
  5. Bukau, B. and Horwich, A. L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351-366. https://doi.org/10.1016/S0092-8674(00)80928-9
  6. Bukau, B., Weissman, J. and Horwich, A. 2006. Molecular chaperones and protein quality control. Cell 125:443-451. https://doi.org/10.1016/j.cell.2006.04.014
  7. Casadei, M. A., Ingram, R., Hitchings, E., Archer, J. and Gaze, J. E., 2001. Heat resistance of Bacillus cereus, Salmonella typhimurium and Lactobacillus delbrueckii in relation to pH and ethanol. Int. J. Food Microbiol 63:125-134. https://doi.org/10.1016/S0168-1605(00)00465-7
  8. Cotter, P. D. and Hill, C. 2003. Surviving the acid test: responses of grampositive bacteria to low pH. Microbiology and Molecular Biology 67:429-453. https://doi.org/10.1128/MMBR.67.3.429-453.2003
  9. De Angelis, M. and Gobbetti, M. 2004. Environmental stress responses in Lactobacillus: A review. Proteomics 4:106-122. https://doi.org/10.1002/pmic.200300497
  10. Desmond, C., Stanton, C., Fitzgerald, G. F., Collins, K. and Ross, R. P. 2001. Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int. Dairy J. 11:801-808. https://doi.org/10.1016/S0958-6946(01)00121-2
  11. Doron, S., Snydman, D. R. and Gorbach, S. L. 2005. Lactobacillus GG: Bacteriology and clinical applications. Gastroenterol Clin. North Am. 34:483-498. https://doi.org/10.1016/j.gtc.2005.05.011
  12. Duary, R. K., Batish, V. K. and Grover, S. 2010. Expression of the atpD gene in probiotic Lactobacillus plantarum strains under in vitro acidic conditions using RTqRCR. Research in Microbiology 161:399-405. https://doi.org/10.1016/j.resmic.2010.03.012
  13. Fillingame, R. H. and Divall, S. 1999. Proton ATPase in bacteria: Comparison to Escherichia coli $F_1F_0$ as the prototype. Novartis Foundation Symposium 221:218-229.
  14. Fiske, C. H. and Subbarow, Y. 1925. The colorimetric determination of phosphorous. J. Biol. Chem. 66: 375-389.
  15. Glaasker, E., Konings, W. N. and Poolman, B. 1996. Osmotic regulation of intracellular solute pools in Lactobacillus plantarum. J. Bacteriol. 178:575-582. https://doi.org/10.1128/jb.178.3.575-582.1996
  16. Gorbach, S. L. 2000. Probiotics and gastrointestinal health. Am. J. Gastroenterol 95:S2-S4. https://doi.org/10.1016/S0002-9270(99)00806-0
  17. Gorbach, S. L., Chang, T. W. and Goldin, B. 1987. Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG. Lancet 2:1519.
  18. Hartl, F. U. and Hayer-Hartl, M. 2002. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295:1852-1858. https://doi.org/10.1126/science.1068408
  19. Hekmat, S. and McMahon, D. J. 1992. Survival of Lactobacillus acidophilus and Bifidobacterium bifidumin ice cream for use as a probiotic food. Dairy Science 75: 1415-1422. https://doi.org/10.3168/jds.S0022-0302(92)77895-3
  20. Henriksson, A., Khaled, A. K. D. and Conway, P. L. 1999. Lactobacillus colonization of the gastrointestinal tract of mice after removal of the non-secreting stomach region. Microb. Ecol. Health Dis. 11:96-99. https://doi.org/10.1080/089106099435835
  21. Hong, S. I., Kim, Y. J. and Pyun, Y. R. 1999. Acid tolerance of Lactobacillus plantarumfrom Kimchi. Food Science and Technology 32:142-148.
  22. Houry, W. A., Frishman, D., Eckerskorn, C., Lottspeich, F. and Hartl, F. U. 1999. Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147-154. https://doi.org/10.1038/45977
  23. Hutkins, R. W. and Nannen, N. L. 1993. pH Homeostasis in lactic acid bacteria. J. Dairy Science 76: 2354-2365. https://doi.org/10.3168/jds.S0022-0302(93)77573-6
  24. Ishibashi, N. and Shimamura, S. 1993. Bifidobacteria: Research and development in Japan. Journal of Food Technology 47:129-134.
  25. Isolauri, E., Salminen, S. and Ouwehand, A. C. 2004. Probiotics. Best Practice & Research Clinical Gastroenterology 18:299-313. https://doi.org/10.1016/j.bpg.2003.10.006
  26. Kailasapathy, K. and Rybka, S. 1997. L. acidophilus and Bifidobacterium spp.: Their therapeutic potential and survival in yogurt. Australian Journal of Dairy Technology 52:47-72.
  27. Kaneko, T., Sato. S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., Kimura, T., Hosouchi, T., Matsuno, A., Muraki, A., Nakazaki, N., Naruo, K., Okumura, S., Shimpo, S., Takeuchi, C., Wada, T., Watanabe, A., Yamada, M., Yasuda, M. and Tabata, S. 1996. Sequence analysis of the genome of the unicellular Cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential proteincoding regions. DNA Res. 3:109-136. https://doi.org/10.1093/dnares/3.3.109
  28. Kim, W. S., Perl, L., Park, J. H., Tandianus, J. E. and Dunn, N. W. 2001. Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr. Microbiol. 43:346-350. https://doi.org/10.1007/s002840010314
  29. Kligler, B. and Cohrssen, A. 2008. Probiotics. Am. Fam. Physician. 78:1073-1078.
  30. Koponen, J., Laakso, K., Koskenniemi, K., Kankainen, M., Savijoki, K., Nyman, T. A., De Vos, W. M., Tynkkynen, S., Kalkkinen, N. and Varmanen, P. 2012. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. Proteomics 75:1357-1574. https://doi.org/10.1016/j.jprot.2011.11.009
  31. Kullen, M. J. and Klaenhammer, T. R. 1999. Identification of the pH-inducible, proton-translocating F1F0 ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: Gene structure, cloning and characterization. Mol. Microbiol. 33:1152-1161.
  32. Laroia, S. and Martin, J. H. 1991. Effect of pH on survival of Bifidobacterium bifidum and Lactobacillus acidophilus in frozen fermented dairy desserts. Cultured Dairy Products 26:13-21.
  33. Lemay, M. J., Rodrigue, N., Gariepy, C. and Saucier, L. 2000. Adaptation of Lactobacillus alimentarius to environmental stresses. Int. J. Food Microbiol. 55:249-253. https://doi.org/10.1016/S0168-1605(00)00181-1
  34. Lim, E. M., Ehrlich, S. D. and Maguin, E. 2000. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21:2557-2561. https://doi.org/10.1002/1522-2683(20000701)21:12<2557::AID-ELPS2557>3.0.CO;2-B
  35. Obembe, O. O., Jacobsen, E., Vincken, J. and Visser, R. G. F. 2009. Differential expression of cellulose synthase (CesA) gene transcripts in potato as revealed by QRTPCR. Plant Physiology and Biochemistry 49:1116-1118.
  36. Obokata, J., Ohme, M. and Hayashida, N. 1991. Nucleotide sequence of a cDNA clone encoding a putative glycine-rich protein of 19.7 kDa in Nicotiana sylvestris. Plant Mol. Biol. 17:953-955. https://doi.org/10.1007/BF00037080
  37. Olson, E. R. 1993. Influence of pH on bacterial gene expression. Mol. Microbiol. 8:5-14. https://doi.org/10.1111/j.1365-2958.1993.tb01198.x
  38. Ouwehand, A. C., Salminen, S. and Isolauri, E. 2002. Probiotics: An overview of beneficial effects. Antonie Van Leeuwenhoek. 82:279-289. https://doi.org/10.1023/A:1020620607611
  39. Rijkers, G. T., Bengmark, S., Enck, P., Haller, D., Herz, U., Kalliomaki, M., Kudo, S., Lenoir-Wijnkoop, I., Mercenier, A., Myllyluoma, E., Rabot, S., Rafter, J., Szajewska, H., Watzl, B., Wells, J., Wolvers, D. and Antoine, J. M. 2010. Guidance for substantiating the evidence for beneficial effects of probiotics: Current status and recommendations for future research. J. Nutr. 140:6715-6765.
  40. Schmidt, G., Hertel, C. and Hammes, W. P. 1999. Molecular characterisation of the dnaK operon of Lactobacillus sakei LTH681. System. Appl. Microbiol. 22:321-328. https://doi.org/10.1016/S0723-2020(99)80039-3
  41. Seigumfelt, H., Rechinger, K. B. and Jakobsen, M. 2000. Dynamic changes of intracellular pH in individual lactic acid bacterium cells in response to a rapid drop in extracellular pH. Applied and Environmental Microbiology 66:2330-2335. https://doi.org/10.1128/AEM.66.6.2330-2335.2000
  42. Shah, N. P., Lankaputhra, W. E. V., Britz, M. L. and Kyle, W. S. A. 1995. Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage. Dairy Journal 5:515-521. https://doi.org/10.1016/0958-6946(95)00028-2
  43. Stuart, M. R., Chou, L. S. and Weimer, B. C. 1999. Influence of carbohydrate starvation and arginine on culturability and amino acid utilization of Lactococcuslactis subsp. lactis. Applied and Environmental Microbiology 65:665-673. https://doi.org/10.1128/AEM.65.2.665-673.1999
  44. Sugimoto, S. and Sonomoto, K. 2011. Quality control of protein structure in lactic acid bacteria. Pages 143-155 in Lactic acid bacteria and bifidobacteria. Sonomoto, K., Yokota, A. Caister Avademic Press.
  45. Teter, S. A., Houry, W. A., Ang, D., Tradler, T., Rockabrand, D., Fischer, G., Blum, P., Georgopoulos, C. and Hartl, F. U. 1999. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755-765. https://doi.org/10.1016/S0092-8674(00)80787-4
  46. Udvardi, M. K., Czechowski, T. and Scheible, W. R. 2008. Eleven golden rules of quantitative RT-PCR. The Plant Cell 20:1736-1737. https://doi.org/10.1105/tpc.108.061143
  47. Wall, T., Bath, K., Britton, R. A., Jonsson, H., Versalovic, J. and Roos, S. 2007. The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall altering esterase. Applied and Environmental Microbiology 73:3924-3935. https://doi.org/10.1128/AEM.01502-06
  48. Wouters, J. A., Mailhes, M., Rombuts, F. M., de Vos, W. M., Kuipers, O. P. and Abee, T. 2000. Physiological and regulatory effects of controlled overproduction of five cold shock proteins of Lactococcus lactis MG1363. Appl. Environ. Microbiol. 66:3756-3763. https://doi.org/10.1128/AEM.66.9.3756-3763.2000