Acknowledgement
Supported by : Yonsei University College
References
- Ebara S, Nakayama K. Mechanism for the action of bone morphogenetic proteins and regulation of their activity. Spine. 2002;27:S10-5. https://doi.org/10.1097/00007632-200208151-00004
- Hogan BL. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 1996;10:1580-94. https://doi.org/10.1101/gad.10.13.1580
- Wozney JM. Overview of bone morphogenetic proteins. Spine. 2002;27:S2-8. https://doi.org/10.1097/00007632-200208151-00002
- Herford AS, Boyne PJ. Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). J Oral Maxillofac Surg. 2008;66:616-24. https://doi.org/10.1016/j.joms.2007.11.021
- Lan J, Wang ZF, Shi B, Xia HB, Cheng XR. The influence of recombinant human BMP-2 on bone-implant osseointegration: biomechanical testing and histomorphometric analysis. Int J Oral Maxillofac Surg. 2007;36:345-9. https://doi.org/10.1016/j.ijom.2006.10.019
- Ono M, Sonoyama W, Yamamoto K, Oida Y, Akiyama K, Shinkawa S, et al. Efficient bone formation in a swine socket lift model using Escherichia coli-derived recombinant human bone morphogenetic protein-2 adsorbed in beta-tricalcium phosphate. Cells Tissues Organs. 2014;199:249-55. https://doi.org/10.1159/000369061
- Bessho K, Konishi Y, Kaihara S, Fujimura K, Okubo Y, Iizuka T. Bone induction by Escherichia coli-derived recombinant human bone morphogenetic protein-2 compared with Chinese hamster ovary cell-derived recombinant human bone morphogenetic protein-2. Br J Oral Maxillofac Surg. 2000;38:645-9. https://doi.org/10.1054/bjom.2000.0533
- Choi Y, Yun JH, Kim CS, Choi SH, Chai JK, Jung UW. Sinus augmentation using absorbable collagen sponge loaded with Escherichia coli-expressed recombinant human bone morphogenetic protein 2 in a standardized rabbit sinus model: a radiographic and histologic analysis. Clin Oral Implants Res. 2012;23:682-9. https://doi.org/10.1111/j.1600-0501.2011.02222.x
- Lee JK, Cho LR, Um HS, Chang BS, Cho KS. Bone formation and remodeling of three different dental implant surfaces with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in a rabbit model. Int J Oral Maxillofac Implants. 2013;28:424-30. https://doi.org/10.11607/jomi.2751
- Hong SJ, Kim CS, Han DK, Cho IH, Jung UW, Choi SH, et al. The effect of a fibrin-fibronectin/beta-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects. Biomaterials. 2006;27:3810-6. https://doi.org/10.1016/j.biomaterials.2006.02.045
- Hannink G, Arts JJ. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury. 2011;42 Suppl 2:S22-5.
- Annis P, Brodke DS, Spiker WR, Daubs MD, Lawrence BD. The fate of L5-S1 with low dose BMP-2 and pelvic fixation, with or without interbody fusion, in adult deformity surgery. Spine. 2015. doi:10.1097/BRS.0000000000000867.
- Yoshida K, Bessho K, Fujimura K, Konishi Y, Kusumoto K, Ogawa Y, et al. Enhancement by recombinant human bone morphogenetic protein-2 of bone formation by means of porous hydroxyapatite in mandibular bone defects. J Dent Res. 1999;78:1505-10. https://doi.org/10.1177/00220345990780090401
- Jensen SS, Broggini N, Hjorting-Hansen E, Schenk R, Buser D. Bone healing and graft resorption of autograft, anorganic bovine bone and betatricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res. 2006;17:237-43. https://doi.org/10.1111/j.1600-0501.2005.01257.x
- Guda T, Darr A, Silliman DT, Magno MH, Wenke JC, Kohn J, et al. Methods to analyze bone regenerative response to different rhBMP-2 doses in rabbit craniofacial defects. Tissue Eng Part C Methods. 2014;20:749-60. https://doi.org/10.1089/ten.tec.2013.0581
- Jiang ZQ, Liu HY, Zhang LP, Wu ZQ, Shang DZ. Repair of calvarial defects in rabbits with platelet-rich plasma as the scaffold for carrying bone marrow stromal cells. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113:327-33. https://doi.org/10.1016/j.tripleo.2011.03.026
- Schmidlin PR, Nicholls F, Kruse A, Zwahlen RA, Weber FE. Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes. Clin Oral Implants Res. 2013;24:149-57. https://doi.org/10.1111/j.1600-0501.2011.02315.x
- Jung JH, Yun JH, Um YJ, Jung UW, Kim CS, Choi SH, et al. Bone formation of Escherichia coli expressed rhBMP-2 on absorbable collagen block in rat calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111:298-305. https://doi.org/10.1016/j.tripleo.2010.05.011
- Visser R, Arrabal PM, Becerra J, Rinas U, Cifuentes M. The effect of an rhBMP- 2 absorbable collagen sponge-targeted system on bone formation in vivo. Biomaterials. 2009;30:2032-7. https://doi.org/10.1016/j.biomaterials.2008.12.046
- Yun PY, Kim YK, Jeong KI, Park JC, Choi YJ. Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: two pilot studies in animal bony defect model. J Craniomaxillofac Surg. 2014;42:1909-17. https://doi.org/10.1016/j.jcms.2014.07.011
- Liu WC, Robu IS, Patel R, Leu MC, Velez M, Chu TM. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones. Biomed Mater. 2014;9:045013. https://doi.org/10.1088/1748-6041/9/4/045013
- Ong JL, Bess EG, Bessho K. Osteoblast progenitor cell responses to characterized titanium surfaces in the presence of bone morphogenetic protein-atelopeptide type I collagen in vitro. J Oral Implantol. 1999;25:95-100. https://doi.org/10.1563/1548-1336(1999)025<0095:OPCRTC>2.3.CO;2
- Bessho K, Carnes DL, Cavin R, Chen HY, Ong JL. BMP stimulation of bone response adjacent to titanium implants in vivo. COIR. 1999;10:212-8.
- Zhu W, Wang D, Zhang X, Lu W, Han Y, Ou Y, et al.Experimental study of nano-hydroxyapatite/recombinant human bone morphogenetic protein-2 composite artificial bone. Artif Cells Blood Substit Immobil Biotechnol. 2010;38:150-6. https://doi.org/10.3109/10731191003712756
- Turhani D, Weissenbock M, Stein E, Wanschitz F, Ewers R. Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules. J Oral Maxillofac Surg. 2007;65:485-93. https://doi.org/10.1016/j.joms.2005.12.065
- Lee KB, Taghavi CE, Song KJ, Sintuu C, Yoo JH, Keorochana G, et al. Inflammatory characteristics of rhBMP-2 in vitro and in an in vivo rodent model. Spine. 2011;36:E149-54. https://doi.org/10.1097/BRS.0b013e3181f2d1ec
- Deutsch H. High-dose bone morphogenetic protein-induced ectopic abdomen bone growth. Spine J. 2010;10:e1-4.
- Tannoury CA, An HS. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J. 2014;14:552-9. https://doi.org/10.1016/j.spinee.2013.08.060
- Lee JW, Lim HC, Lee EU, Park JY, Lee JS, Lee DW, et al. Paracrine effect of the bone morphogenetic protein-2 at the experimental site on healing of the adjacent control site: a study in the rabbit calvarial defect model. J Periodontal Implant Sci. 2014;44:178-83. https://doi.org/10.5051/jpis.2014.44.4.178
- Crouzier T, Sailhan F, Becquart P, Guillot R, Logeart-Avramoglou D, Picart C. The performance of BMP-2 loaded TCP/HAP porous ceramics with a polyelectrolyte multilayer film coating. Biomaterials. 2011;32:7543-54. https://doi.org/10.1016/j.biomaterials.2011.06.062
- Patel ZS, Ueda H, Yamamoto M, Tabata Y, Mikos AG. In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds. Pharm Res. 2008;25:2370-8. https://doi.org/10.1007/s11095-008-9685-1
- Hernandez A, Sanchez E, Soriano I, Reyes R, Delgado A, Evora C. Materialrelated effects of BMP-2 delivery systems on bone regeneration. Acta Biomater. 2012;8:781-91. https://doi.org/10.1016/j.actbio.2011.10.008
- Zhao J, Wang S, Bao J, Sun X, Zhang X, Zhang X, et al. Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo. PLoS One. 2013;8, e54645. https://doi.org/10.1371/journal.pone.0054645
- Lu Z, Huangfu C, Wang Y, Ge H, Yao Y, Zou P, et al. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features. Mater Sci Eng C Mater Biol Appl. 2015;52:251-8. Submit https://doi.org/10.1016/j.msec.2015.03.047
Cited by
- miR‐33a‐5p modulates TNF‐α‐inhibited osteogenic differentiation by targeting SATB2 expression in hBMSCs vol.590, pp.3, 2016, https://doi.org/10.1002/1873-3468.12064
- A Fusion between Domains of the Human Bone Morphogenetic Protein-2 and Maize 27 kD γ-Zein Accumulates to High Levels in the Endoplasmic Reticulum without Forming Protein Bodies in Transgenic Tob vol.7, pp.None, 2016, https://doi.org/10.3389/fpls.2016.00358
- In Vitro and In Vivo Evaluation of Commercially Available Fibrin Gel as a Carrier of Alendronate for Bone Tissue Engineering vol.2017, pp.None, 2015, https://doi.org/10.1155/2017/6434169
- Radiographic and histologic effects of bone morphogenetic protein-2/hydroxyapatite within bioabsorbable magnesium screws in a rabbit model vol.14, pp.None, 2015, https://doi.org/10.1186/s13018-019-1143-8
- Dose Effects of Slow-Released Bone Morphogenetic Protein-2 Functionalized β-Tricalcium Phosphate in Repairing Critical-Sized Bone Defects vol.26, pp.3, 2015, https://doi.org/10.1089/ten.tea.2019.0161
- Comparison of demineralized bone matrix and hydroxyapatite as carriers of Escherichia coli recombinant human BMP-2 vol.25, pp.1, 2021, https://doi.org/10.1186/s40824-021-00225-7