과제정보
연구 과제 주관 기관 : Korea Health Industry Development Institute (KHIDI)
참고문헌
- Hazeltine LB, Selekman JA, Palecek SP: Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biotechnol Adv 2013, 31:1002-1019. https://doi.org/10.1016/j.biotechadv.2013.03.002
- Iijima S, Ajayan PM, Ichihashi T: Growth model for carbon nanotubes. Phys Rev Lett 1992, 69:3100-3103. https://doi.org/10.1103/PhysRevLett.69.3100
- Hummer G, Rasaiah JC, Noworyta JP: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414:188-190. https://doi.org/10.1038/35102535
- Zhang Q, Huang JQ, Zhao MQ, Qian WZ, Wei F: Carbon nanotube mass production: principles and processes. ChemSusChem 2011, 4:864-889. https://doi.org/10.1002/cssc.201100177
- Fischer JE: Chemical doping of single-wall carbon nanotubes. Accounts Chem Res 2002, 35:1079-1086. https://doi.org/10.1021/ar0101638
- Tasis D, Tagmatarchis N, Bianco A, Prato M: Chemistry of carbon nanotubes. Chem Rev 2006, 106:1105-1136. https://doi.org/10.1021/cr050569o
- Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 2003, 3:1379-1382. https://doi.org/10.1021/nl034524j
- Dieckmann GR, Dalton AB, Johnson PA, Razal J, Chen J, Giordano GM, Munoz E, Musselman IH, Baughman RH, Draper RK: Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc 2003, 125:1770-1777. https://doi.org/10.1021/ja029084x
- Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG: DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2003, 2:338-342. https://doi.org/10.1038/nmat877
- MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP: Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A 2005, 74:489-496.
- Cheng HKF, Basu T, Sahoo NG, Li L, Chans SH: Current advances in the carbon nanotube/thermotropic main-chain liquid crystalline polymer nanocomposites and their blends. Polymers 2012, 4:889-912. https://doi.org/10.3390/polym4020889
- Fabbro A, Prato M, Ballerini L: Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliv Rev 2013, 65:2034-2044. https://doi.org/10.1016/j.addr.2013.07.002
- Bates K, Kostarelos K: Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv Drug Dliv Rev 2013, 65:2023-2033. https://doi.org/10.1016/j.addr.2013.10.003
- Meredith JR, Jin C, Narayan RJ, Aggarwal R: Biomedical applications of carbon-nanotube composites. Front Biosci 2012, 5:610-621.
- Namgung S, Kim T, Baik KY, Lee M, Nam JM, Hong S: Fibronectin-Carbon-Nanotube Hybrid Nanostructures for Controlled Cell Growth. Small 2011, 7:56-61. https://doi.org/10.1002/smll.201001513
- Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, Prato M, Ballerini L: Interfacing neurons with carbon nanotubes: Electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci 2007, 27:6931-6936. https://doi.org/10.1523/JNEUROSCI.1051-07.2007
- Jan E, Kotov NA: Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 2007, 7:1123-1128. https://doi.org/10.1021/nl0620132
- Dowell-Mesfin NM, Abdul-Karim MA, Turner AMP, Schanz S, Craighead HG, Roysam B, Turner JN, Shain W: Topographically modified surfaces affect orientation and growth of hippocampal neurons. J Neural Eng 2004, 1:78-90. https://doi.org/10.1088/1741-2560/1/2/003
- Hu H, Ni Y, Montana V, Haddon RC, Parpura V: Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 2004, 4:507-511. https://doi.org/10.1021/nl035193d
- Kam NW, Jan E, Kotov NA: Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett 2009, 9:273-278. https://doi.org/10.1021/nl802859a
- Park SY, Choi DS, Jin HJ, Park J, Byun KE, Lee KB, Hong S: Polarization-Controlled Differentiation of Human Neural Stem Cells Using Synergistic Cues from the Patterns of Carbon Nanotube Monolayer Coating. Acs Nano 2011, 5:4704-4711. https://doi.org/10.1021/nn2006128
- Chao TI, Xiang SH, Chen CS, Chin WC, Nelson AJ, Wang CC, Lu J: Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem Bioph Res Co 2009, 384:426-430. https://doi.org/10.1016/j.bbrc.2009.04.157
- Sridharan I, Kim T, Wang R: Adapting collagen/CNT matrix in directing hESC differentiation. Biochem Bioph Res Co 2009, 381:508-512. https://doi.org/10.1016/j.bbrc.2009.02.072
- Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, Gavin B, Mann J, Vassileva G, McMahon A: Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 1994, 12:11-24. https://doi.org/10.1016/0896-6273(94)90148-1
- Chao TI, Xiang S, Lipstate JF, Wang C, Lu J: Poly(methacrylic acid)-grafted carbon nanotube scaffolds enhance differentiation of hESCs into neuronal cells. Adv Mater 2010, 22:3542-3547. https://doi.org/10.1002/adma.201000262
- Tay CY, Gu HG, Leong WS, Yu HY, Li HQ, Heng BC, Tantang H, Loo SCJ, Li LJ, Tan LP: Cellular behavior of human mesenchymal stem cells cultured on single-walled carbon nanotube film. Carbon 2010, 48:1095-1104. https://doi.org/10.1016/j.carbon.2009.11.031
- Johnson GVW, Jope RS: The Role of Microtubule-Associated Protein-2 (Map-2) in Neuronal Growth, Plasticity, and Degeneration. J Neurosci Res 1992, 33:505-512. https://doi.org/10.1002/jnr.490330402
- Namgung S, Baik KY, Park J, Hong S: Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. Acs Nano 2011, 5:7383-7390. https://doi.org/10.1021/nn2023057
- Baik KY, Park SY, Heo K, Lee KB, Hong S: Carbon Nanotube Monolayer Cues for Osteogenesis of Mesenchymal Stem Cells. Small 2011, 7:741-745. https://doi.org/10.1002/smll.201001930
- Mooney E, Mackle JN, Blond DJ, O'Cearbhaill E, Shaw G, Blau WJ, Barry FP, Barron V, Murphy JM: The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials 2012, 33:6132-6139. https://doi.org/10.1016/j.biomaterials.2012.05.032
- Zhu L, Chang DW, Dai LM, Hong YL: DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 2007, 7:3592-3597. https://doi.org/10.1021/nl071303v
피인용 문헌
- Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine vol.32, pp.3, 2015, https://doi.org/10.1002/btpr.2262
- Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration vol.27, pp.2, 2015, https://doi.org/10.1007/s10856-015-5640-y
- Neural differentiation on aligned fullerene C60 nanowhiskers vol.53, pp.80, 2017, https://doi.org/10.1039/c7cc06395d
- Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials vol.4, pp.None, 2015, https://doi.org/10.1186/s40580-017-0096-z
- Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes vol.106, pp.10, 2015, https://doi.org/10.1002/jbm.a.36461
- Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation vol.22, pp.1, 2015, https://doi.org/10.1186/s40824-018-0120-3
- Optogenetic Modulation and Reprogramming of Bacteriorhodopsin-Transfected Human Fibroblasts on Self-Assembled Fullerene C60 Nanosheets vol.3, pp.2, 2015, https://doi.org/10.1002/adbi.201800254
- Preparation and characterization of PCL-coated porous hydroxyapatite scaffolds in the presence of MWCNTs and graphene for orthopedic applications vol.26, pp.1, 2015, https://doi.org/10.1007/s10934-018-0644-x
- The Advances in Biomedical Applications of Carbon Nanotubes vol.5, pp.2, 2015, https://doi.org/10.3390/c5020029
- Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering vol.23, pp.1, 2019, https://doi.org/10.1186/s40824-019-0176-8
- Transparent carbon nanotube electrodes for electric cell-substrate impedance sensing vol.9, pp.4, 2019, https://doi.org/10.1557/mrc.2019.116
- Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration vol.8, pp.None, 2020, https://doi.org/10.3389/fbioe.2020.597661
- Engineering of functionalized carbon nano-onions reinforced nanocomposites: Fabrication, biocompatibility, and mechanical properties vol.35, pp.8, 2015, https://doi.org/10.1557/jmr.2020.23
- Properties of differentiated SH-SY5Y grown on carbon-based materials vol.10, pp.33, 2020, https://doi.org/10.1039/d0ra03383a
- Polymeric nanocomposites reinforced with nanowhiskers: Design, development, and emerging applications vol.36, pp.3, 2015, https://doi.org/10.1177/8756087919898731
- Carbon nanostructures as a scaffold for human embryonic stem cell differentiation toward photoreceptor precursors vol.12, pp.36, 2015, https://doi.org/10.1039/d0nr02256j
- Modern World Applications for Nano-Bio Materials: Tissue Engineering and COVID-19 vol.9, pp.None, 2015, https://doi.org/10.3389/fbioe.2021.597958
- Tunable Substrate Functionalities Direct Stem Cell Fate toward Electrophysiologically Distinguishable Neuron-like and Glial-like Cells vol.13, pp.1, 2015, https://doi.org/10.1021/acsami.0c17257
- Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites vol.120, pp.None, 2015, https://doi.org/10.1016/j.jmbbm.2021.104554