DOI QR코드

DOI QR Code

The Effect of Porous Support and Intermediate Layer on the Silica-zirconia Membranes for Gas Permeation Performance

실리카-지르코니아 분리막 성능에 대한 다공성 지지체와 중간층의 영향

  • Lee, Hye Ryeon (R&D Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Seo, Bongkuk (R&D Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology (KRICT))
  • 이혜련 (한국화학연구원, 그린정밀화학연구센터) ;
  • 서봉국 (한국화학연구원, 그린정밀화학연구센터)
  • Received : 2015.01.12
  • Accepted : 2015.02.03
  • Published : 2015.02.28

Abstract

In this study, porous metal (O.D. = 10 mm, length = 10 mm, 316 L SUS, Mott Corp.) and ${\alpha}$-alumina tube (O.D. = 10 mm, length = 50 mm, Pall, German) support was modified with suspension sols, which were consisted of $3{\sim}4{\mu}m$ and 150 nm size of ${\alpha}$-alumina particle in the water or silica-zirconia colloidal sol. The porous support was fabricated by dip coating method for 5 seconds with suspension of alumina particles. After drying at $100^{\circ}C$ for 1 h, it was calcined at $550^{\circ}C$ for 30 min. It was repeated several times in order to decrease big pore on support. The surface roughness and largest pore size on the porous support was decreased by increasing coating times with $3{\sim}4{\mu}m$ size of ${\alpha}$-alumina particle and alumina coating with 150 nm size of ${\alpha}$-alumina particle served as further smoothening the surface and decreasing the pore size of the substrate. And the silica-zirconia membranes were successfully prepared on the modified porous metal and ${\alpha}$-alumina supports, and showed hydrogen permeance in the range of $1.8-8.4{\times}10^{-4}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ and $3.3-5.0{\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$, respectively.

본 연구에서는 기공의 크기가 큰 다공성 지지체를 $3{\sim}4{\mu}m$, 150 nm의 크기를 갖는 ${\alpha}$-알루미나 입자를 물과 실리카-지르코니아 용액에 각각 분산시키는 방법으로 표면 개질을 하였다. $3{\sim}4{\mu}m$ 크기의 알루미나 입자가 분산된 용액을 이용하여 금속 지지체 및 알루미나 지지체에 코팅하였을 때, 코팅횟수가 증가할수록 지지체의 표면의 큰 기공이 감소하였고, 여기에 150 nm 크기의 알루미나 입자가 분산된 용액으로 추가 코팅을 하면 작은 크기의 알루미나 입자가 기공 사이사이에 들어가면서 지지체를 좀 더 매끄럽게 개질하는 역할을 하는 것을 확인하였다. 특히 실리카-지르코니아 용액을 분산매로 하여 표면 개질을 한 경우, 알루미나 입자가 실리카-지르코니아 층에 촘촘하게 박힌 모양으로 고정이 되어 지지체 개질에 효과적임을 확인하였다. 이러한 방법으로 제조된 실리카-지르코니아 분리막의 기체투과도는 상온에서 각각 $1.8-8.4{\times}10^{-4}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$, $3.3-5.0{\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$이며 수소/질소 선택도는 Knudsen 분포를 보였다. 표면 개질된 지지체에 다양한 분리층을 형성하는 방법으로 무기 분리막 응용에 이용할 수 있을 것으로 예상된다.

Keywords

References

  1. S. J. Khatib, S. T. Oyama, K. R. de Souza, and F. B. Noronha, "Review of silica membranes for hydrogen separation prepared by chemical vapor deposition", Membr. Sci. Tech., 14, 25 (2011). https://doi.org/10.1016/B978-0-444-53728-7.00002-1
  2. Tsuru, "Nano/subnano-tuning of porous ceramic membranes for molecular separation", J. Sol-gel Sci. Technol., 46, 349 (2008). https://doi.org/10.1007/s10971-008-1712-5
  3. H. R. Lee, B. Seo, and Y.-J. Choi, "Control of nano-structure of ceramic membrane and its application", Membr. J., 22, 77 (2012).
  4. B. Sea, D.-W. Lee, and K.-H. Lee, "Synthesis of silica/alumina composite membrane using sol-gel and CVD method for hydrogen purification at high temperature", Membr. J., 11, 124 (2001).
  5. S.-L. Wee, C.-T. Tye, and S. Bhatia, "Membrane separation process- Pervaporation through zeolite membrane", Separ. Purif. Technol., 63, 500 (2008). https://doi.org/10.1016/j.seppur.2008.07.010
  6. A. Tarditi, C. Gerboni, and L. Cornaglia, "PdAu membranes supported on top of vacuum-assisted $ZrO_2$-modified porous stainless steel substrates", J. Membr. Sci., 428, 1 (2013). https://doi.org/10.1016/j.memsci.2012.10.029
  7. Ivan P. Mardilovich, Erik Engwall, and Yi Hua Ma, "Dependence of hydrogen flux on the pore size and plating surface topology of asymmetric Pd-porous stainless steel membranes", Desalination, 144, 85 (2002). https://doi.org/10.1016/S0011-9164(02)00293-X
  8. M. Broglia, P. Pinacci, M. Radaelli, A. Bottino, G. Capannelli, A. Comite, G. Vanacore, and M. Zani, "Synthesis and characterization of Pd membranes on alumina-modified porous stainless steel supports", Desalination, 245, 508 (2009). https://doi.org/10.1016/j.desal.2009.01.004
  9. A. Bottino, M. Broglia, G. Capannelli, A. Comite, and P. Pinacci, "Sol-gel synthesis of thin alumina layers on porous stainless steel supports for high temperature palladium membranes", International J. Hydrogen Energy, 39, 4717 (2014). https://doi.org/10.1016/j.ijhydene.2013.11.096
  10. Anwu Li, John R. Grace, and C. Jim Lim, "Preparation of thin Pd-based composite membrane on plannar metallic substrate Part I: Pre-treatement on porous stainless steel substrate", J. Membr. Sci., 298, 175 (2007). https://doi.org/10.1016/j.memsci.2007.04.016
  11. Z. Li, Z. Yang, N. Qiu, and G. Yang, "A sol-gel-derived ${\alpha}-Al_2O_3$ crystal interlayer modified 316 L porous stainless steel to support $TiO_2,\;SiO_2$, and $TiO_2-SiO_2$ hybrid membranes", J. Mater. Sci., 46, 3127 (2011). https://doi.org/10.1007/s10853-010-5193-x
  12. M. Asaeda, M. Ishida, and Y. Tasaka, "Pervaporation characteristics of silica-zirconia membranes for separation of aqueous organic solution", Separation Science and Technology, 40, 239 (2005). https://doi.org/10.1081/SS-200041993
  13. M. Kanezashi and M. Asaeda, "Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature", J. Membr. Sci., 271, 86 (2007).
  14. R. M. de Vos, W. F. Maier, and H. Verweij, "Hydrophobic silica membranes for gas separation" J. Membr. Sci., 158, 277 (1999). https://doi.org/10.1016/S0376-7388(99)00035-6
  15. M. W. J. Luiten, N. E. Bense, C. Huiskes, H. Kruidhof, and A. Nijmeijer, "Robust method for micro-porous silica membrane fabrication", J. Membr. Sci., 348, 1 (2010). https://doi.org/10.1016/j.memsci.2009.11.029
  16. Y. Gu and S. T. Oyama, "Ultrathin, hydrogen- selective silica membranes deposited on alumina- graded structures prepared from size-controlled boehmite sols", J. Membr. Sci., 306, 216 (2007). https://doi.org/10.1016/j.memsci.2007.08.045
  17. D.-W. Lee, S.-J. Park, C.-Y. Yu, S.-K. Ihm, and K.-H. Lee, "Novel synthesis of a porous stainless steel-supported Knudsen membrane with remarkably high permeability", J. Membr. Sci., 302, 265 (2007). https://doi.org/10.1016/j.memsci.2007.06.054
  18. H. R. Lee and B. Seo, "Preparation and gas permeation properties of silica membranes on porous stainless steel-tube supports", Membr. J., 24, 177 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.3.177
  19. H. R. Lee, J. Lee, and B. Seo, "Control of silica-zirconia nanoparticles for uniform porous $SiO_2-ZrO_2$ membranes", J. Nanosci. NanoTechnol., 14, 8626 (2014). https://doi.org/10.1166/jnn.2014.9961
  20. H. R. Lee and B. Seo, "Fabrication of $SiO_2-ZrO_2$ (50/50) membranes on the porous stainless steel tube support for pervaporation", Desalination and Water Treatemnet, in press.