DOI QR코드

DOI QR Code

Design of Single Layer Radar Absorbing Structures(RAS) for Minimizing Radar Cross Section(RCS) Using Impedance Matching

임피던스정합을 이용한 레이더반사면적 최소화 단층형 전파흡수구조 설계

  • Jang, Byung-Wook (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Park, Jung-Sun (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2014.10.23
  • Accepted : 2015.01.23
  • Published : 2015.02.01

Abstract

The design of radar absorbing structures(RAS) is a discrete optimization problem and is usually processed by stochastic optimization methods. The calculation of radar cross section(RCS) should be decreased to improve the efficiency of designing RAS. In this paper, an efficient method using impedance matching is studied to design RAS for minimizing RCS. Input impedance of the minimal RCS for the specified wave incident conditions is obtained by interlocking physical optics(PO) and optimizations. Complex permittivity and thickness of RAS are designed to satisfy the calculated input impedance by a discrete optimization. The results reveal that the studied method attains the same results as stochastic optimization which have to conduct numerous RCS analysis. The efficiency of designing RAS can be enhanced by reducing the calculation of RCS.

전파흡수구조(RAS)의 설계는 이산최적화 문제로 확률론적 최적화기법이 적용되며, 효율성을 향상시키기 위해서는 오랜 시간이 소모되는 RCS의 계산량을 감소시켜야 한다. 본 논문에서는 임피던스정합을 이용해 RCS 최소화 단층형 RAS를 설계하기 위한 효과적인 방법을 연구하였다. 연구방법에서는 물리광학법(PO)과 최적화기법의 연동을 통해 전파입사조건에 대해 대상의 RCS가 이상적으로 최소화되는 입력임피던스를 계산하였다. 다음으로 RAS의 복소유전율 및 두께는 이산최적화를 통해 계산된 입력임피던스를 최대한 만족하도록 설계되었다. 연구결과 이러한 방법은 다수의 함수계산이 필요한 확률론적 최적화기법으로 RCS를 직접 최소화한 경우와 동일한 RAS 설계치를 도출하였으며, RCS 해석의 수를 효과적으로 줄임으로써 RAS 설계를 위한 최적화에 소모되는 시간을 크게 감소시켰다.

Keywords

References

  1. Grant, R., The Radar Game - Understanding Stealth and Aircraft Survivability, Mitchell Institute Press, 1998.
  2. Hong, C. S., "Stealth Aircraft and Composites," J. of The Korean Society for Aeronautical and Space Sciences, Vol. 24, Jun. 2005, pp.156-160.
  3. Jang, B. W., Lee, W. J., Joo, Y. S., and Park, J. S., "Optimization of Radar Absorbing Structures for Aircraft Wing Leading Edge," J. of The Korean Society for Aeronautical and Space Sciences, Vol. 41, Apr. 2013, pp.268-274. https://doi.org/10.5139/JKSAS.2013.41.4.268
  4. Kim, J. B., Lee, S. K., and Kim, C. G., "Comparison Study on the Effect of Carbon Nano Materials for Single-layer Microwave Absorbers in X-band," Composites Science and Technology, Vol. 68, Nov. 2008, pp.2909-2916. https://doi.org/10.1016/j.compscitech.2007.10.035
  5. Park, H. S., Choi, I. S., Bang, J. K., Suk, S. H., LEE, S. S., and Kim, H. T., "Optimized Design of Radar Absorbing Materials for Complex Target," J. of Electromagnetic Waves and Applications, Vol. 18, Aug. 2004, pp.1105-1117. https://doi.org/10.1163/1569393042955432
  6. Kim, J. B., "Design of Microwave Absorbing Composite Laminates by Using Semi-empirical Permittivity Models," Ph.D. Thesis, KAIST, 2007.
  7. Cole, K. S., Cole, R. H., "Dispersion and Absorption in Dielectrics I, Alternating Current Characteristics," J. of Chemical physics, Vol. 9, 1941, pp.341-352. https://doi.org/10.1063/1.1750906
  8. Jenn, D. C., Radar and Laser Cross Section Engineering, AIAA Education Series, 2005.
  9. Myong, R. S., Cho, T. H., "Development of a Computational Electromagnetics Code for Radar Cross Section Calculations of Flying Vehicles," J. of The Korean Society for Aeronautical and Space Sciences, Vol. 33, Apr. 2005, pp.1-6.
  10. Cheng, D. K., Fundamentals of Engineering Electromagnetics, Prentice Hall, 1992.
  11. Knott, E. F., Shaeffer, J. F., and Tuley, M. T., Radar Cross Section, Artech House, 1993.
  12. http://faculty.nps.edu/jenn/
  13. Goldberg, D. E., Genetic Algorithm in Search, Optimization, and Machine Learning, Addison-Wesley, 1987.