DOI QR코드

DOI QR Code

Recent Status on Miniature Smart-bullet Techniques

초소형 스마트탄 최근기술 동향분석

  • Lee, Seongheon (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Cho, Hanjin (Core Tech R&D Lab., LIG Nex1) ;
  • Cho, Youngki (Core Tech R&D Lab., LIG Nex1) ;
  • Bang, Hyochoong (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2014.11.03
  • Accepted : 2015.02.06
  • Published : 2015.03.01

Abstract

Miniature smart-bullet is a human-carrying guided missile designed to hit a target easily while having a miniature size. Contrary to the normal missiles, miniature smart-bullet is highly expected to enhance the military strength and survival rate of troops by its compact size readily carriable to a single soldier. In this paper, previously developed techniques, activities and patents of miniature smart-bullet, particularly its structural shape and actuators are surveyed. Furthermore, analysis of required techniques to develop a miniature smart-bullet are also discussed for upcoming conceptual design.

초소형 스마트탄은 탄도를 수정하여 손쉽게 목표물을 타격할 수 있도록 고안된 개인 휴대용 유도미사일이다. 초소형 스마트탄은 유도미사일에 준하는 기능을 수행하는데 반하여 그 크기가 일반 병사들이 쉽게 휴대할 수 있도록 축소됨으로써 아군의 전력과 생존율을 크게 높일 수 있을 것으로 기대된다. 본 논문에서는 초소형 스마트탄의 탄도수정을 위해 사용된 구동장치를 중심으로 해외에서 선행된 기술개발 사례와 특허들을 수집해 보았다. 이를 바탕으로 초소형 스마트탄의 개발을 위한 소요기술들을 분석해 보고, 추후 개념설계를 위한 초석을 마련하였다.

Keywords

References

  1. Barrett, R., Stutts, J., "Modeling, Design, and Testing of a Ballel-launched Adaptive Munition," Proc. SPIE; Smart Structure and Materials, San Diego, CA. 3-6 Mar. 1997, Vol.3041, pp.578-589.
  2. Agneta, M. B., Advances in Flight Control Systems, InTech, 11 Apr. 2011, pp.10-12.
  3. EXACTO, http://www.wired.com/2008/11/what-if-a-snipe
  4. DARPA, http://www.darpa.mil/Our_Work/TTO/Programs/
  5. EXACTO, Washington Post, http://wapo.st/1js5DUw
  6. Self-Guided Bullet, Popular Science, http://www.popsci.com/technology/article/2012-05/rough-sketch-self-guided-bullet
  7. Sandia Labs News Releases, https://share.sandia.gov/news/resources/news_releases/bullet/
  8. Jay Lipeles, Smart bullet, US Patent 6,422,507, 23 Jul. 2002.
  9. Jay Lipeles, R. Glenn Brosch, Guided bullet, US Patent 6,474,593, 5 Nov. 2002.
  10. James, F. J., Brian, A. K., Marc, W. K, Scott, E. R., Brandon, R. R., James, W. W., Ronald, W. G., Small caliber guided projectile, US Patent 7,781,709, 30 Sep. 2008
  11. Alan, B. M., Stephen, A. H., Fredrick, W., Timothy, S. K, Frederic, H. M., Guided projectile, US Patent 7,891,298, 22 Feb. 2011.
  12. Rober, J. C., Steerable projectile charging system, US Patent 8,362,408, 29 Jan. 2013.
  13. Allister, M., Apparatus for guiding a rifle-launched projectile, US Patent 8,502,127, 6 Aug. 2013.
  14. Paddy, M., Steerable projectile, US Patent 8,716,639, 6 May 2014.
  15. Park, S. E., Thomas R. S., "Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals," Journal of Applied Physics, Vol. 82, 1997, pp.1804-1811 https://doi.org/10.1063/1.365983
  16. Bernard, J., William R. C., Hans J., Piezoelectric ceramics, 1st Ed., Academic Press, 1971, pp.16-20.
  17. Laperriere, L., Reinhart, G., CIRP Encyclopedia of Production Engineering, 1st Ed., Springer, 2014, pp.10-11.
  18. Piezoelectric Actuation Mechanisms: An Introduction, Dynamic Structures & Materials, http://www.dynamic-structures.com/s/DSM-App-Note-An-Introduction-to-Piezo-Actuation-v100604.pdf
  19. K. J. Yun, N. S. Goo, H. C. Park, "Research & Development Trends in Piezoelectric Actuators for Smart Structures", J. of Korea Society for Aeronautical & Space Sciences, Vol. 29, No. 1, 2001, pp. 134-141
  20. Issac, A. H., David, A. M., Tyler, T., "Fatigue life characterization for piezoelectric macrofiber composites," Smart Materials and structures, Vol. 21, No. 10, 2012, 105037 (pp.1-2) https://doi.org/10.1088/0964-1726/21/10/105037
  21. MFC, http://www.smart-material.com/MFC-product-main.html
  22. Park, J. K., Moon, W. K., "Constitutive relations for piezoelectric benders under various boundary conditions", Sensors and Actuators A: Physical, Vol. 117, No. 1, Jan. 2005, pp.159-167. https://doi.org/10.1016/j.sna.2004.03.051
  23. Wang, Q. M., Eric, C. L., "Constitutive Equations of Symmetrical Triple Layer Piezoelectric Benders", Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, Vol. 46, No. 6, Nov. 1999, pp.1343-1351. https://doi.org/10.1109/58.808857
  24. Cugat, O., Delamare, J., Reyne, G., "Magnetic micro-actuators and systems (MAGMAS)," Magnetics, IEEE Transactions on, Vol.39, No.6, Nov. 2003, pp.3607-3612. https://doi.org/10.1109/TMAG.2003.816763
  25. Haiwei, L., Jianguo, Z., Zhiwei, L., Youguang, G., "An inchworm mobile robot using electromagnetic linear actuator", Mechatronics, Vol. 19, No. 7, Oct. 2009, pp.1116-1125. https://doi.org/10.1016/j.mechatronics.2008.07.009
  26. David, P. A., Naigang, W., "Permanent Magnets for MEMS," Journal of Microelectromechanical Systems, Vol. 18, 2009, pp.1255-1266. https://doi.org/10.1109/JMEMS.2009.2034389
  27. P. Garnell, Guided weapon control systems, 2nd Ed., Brassey's Defence Publishers, 1985, pp.27-55.