DOI QR코드

DOI QR Code

람다 날개 형상의 옆미끄럼각 효과에 대한 실험적 연구

An Experiment Study on Sideslip Angle Effect of Lambda Wing Configuration

  • Shim, HoJoon (Korea Advanced Institute of Science and Technology) ;
  • Park, Seung-O (Korea Advanced Institute of Science and Technology) ;
  • Oh, Se-Yoon (Agency for Defense Development)
  • 투고 : 2014.11.11
  • 심사 : 2015.02.06
  • 발행 : 2015.03.01

초록

람다 날개 형상의 공력 계수에 대한 실험적 연구를 국방과학연구소의 중형아음속 풍동에서 수행하였다. 본 연구의 주목적은 옆미끄럼각의 변화에 따라 다양한 공력 계수가 어떻게 변화하는지를 조사하는 것이다. 옆미끄럼각이 $0^{\circ}C$인 경우, 피칭 모멘트가 급격히 불안정해지는 현상을 확인하였으며, 옆미끄럼각이 증가함에 따라 pitch break 현상이 더 높은 받음각에서 발생하는 것을 확인하였다. 롤링 모멘트는 옆미끄럼각이 있는 경우 pitch break와 유사한 특성을 보여준다. 이런 경향은 옆미끄럼각이 증가할수록 더 심하게 나타났다. 요잉 모멘트는 높은 받음각에서 옆미끄럼각에 따라 기울기가 크게 변화하였고 불안정한 방향 안정성이 뚜렷이 나타났다. 모멘트의 이런 특성들은 비행 제어를 위해서는 보다 효과적인 조종성 증가 장치가 필수적이란 것을 의미하고 있다.

An experimental study on aerodynamic coefficients of a lambda wing configuration was performed at the low speed wind tunnel of Agency for Defense Development. The main purpose of this study was to investigate the effects of sideslip angle on various aerodynamic coefficients. In the case of $0^{\circ}C$ sideslip angle, nose-up pitching moment rapidly increases at a specific angle of attack. This unstable pitching moment characteristic is referred to as pitch break or pitch up. As the sideslip angle increases, the pitch break is found to be generated at a higher angle of attack. Rolling moment is found to show similar behavior pattern to 'pitch break' style with angle of attack at non-zero sideslip angles. This trend gets severer at greater sideslip angles. Yawing moment also shows substantial variation of the slope and the unstable directional stability with sideslip angles at higher angles of attack. These characteristics of the three moments clearly implies the difficulty of the flight control which requires efficient control augmentation system.

키워드

참고문헌

  1. Lee, K. T., "UCAV development trend and advance prospect." The Korean Society for Aeronautical and Space Sciences Magazine, Vol. 3, No. 2, 2009, pp. 73-89.
  2. Oh, S. Y., Kim, S. H., Ahn, S. K., Cho, C. Y., and Lee, J. G., "An experimental study on the aerodynamic characteristics of a stealth configuration", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 36, No. 10, 2008, pp. 962-968. https://doi.org/10.5139/JKSAS.2008.36.10.962
  3. Stephen C. McParlin, Robin J. Bruce, Anthony G. Hepworth and Andrew J. Rae, "Low speed wind tunnel test on the 1303 UCAV concept.", 24th Applied Aerodynamic Conference, AIAA paper 2006-2985.
  4. Kristian Petterson, "Low speed aerodynamic and flowfield characteristics of a UCAV." 24th Applied Aerodynamic Conference, AIAA paper 2006-2986.
  5. Arthur, M. T., and Petterson, K., "A computational study of the low speed flow over the 1303 UCAV." 25th Applied Aerodynamic Conference, AIAA paper 2007-4568.
  6. Chung, J. J., and Ghee, T., "Numerical investigation of UCAV 1303 configuration with and without simple deployable vortex flap." 24th Applied Aerodynamic Conference, AIAA paper 2006-2989.
  7. Yayla, S., Canpolat, C., Sahin, B., and Akilli, H., "Yaw angle effect on flow structure over the nonslender diamond wind", AIAA Journal, Vol. 48, No. 10, 2010, pp. 2457-2461. https://doi.org/10.2514/1.J050380
  8. Sohn, M. H., Lee, K. Y., and Chand, J. W., "Vortex flow visualization of a yawed delta wing with leading edge extension", Journal of Aircraft, Vol. 41, No. 2, 2004, pp. 231-237. https://doi.org/10.2514/1.9281
  9. Sohn, M. H., Lee, K. Y., and Baek, S. W., "Effects of sideslip on the vortex flow over a delta wing", The Korean Society for Aeronautical and Space Sciences, Vol. 30, No. 1, 2002, pp.1-8.
  10. Lee, K. Y., and Sohn, M. H., "Vortex characteristics of delta wing at large sideslip and high incidence angle", The Korean Society For Aeronautical and Space Sciences conference, 2002, pp. 44-49.
  11. Verhaagen, N. G., and Naarding, S. H. J., "Experimental and numerical investigation of vortex flow over a sideslipping delta wing", Journal of Aircraft, Vol. 26, No. 11, 1989, pp. 971-978. https://doi.org/10.2514/3.45869
  12. Shim, H. J., Park, S. O., and Oh, S. Y., "An experimental study on aerodynamic coefficients of a tailless BWB UCAV", The Korean Society For Aeronautical and Space Sciences conference, 2013, pp. 110-113
  13. Barlow, J. B., Rae, W. H., and Pope, A., Low-speed wind tunnel testing, 3rd ed., John Wiley & Sons, New York, 1999
  14. Ira H. Abbott and Albert E. von Doenhoff, Theory of wing sections, Dover Publications, New York, 1958, pp. 124-136
  15. AIAA, Assessment of experimental uncertainty with application to wind tunnel testing, AIAA Standard, AIAA S-017A-1999, 1999.
  16. Canpolat, C., Yayla, S., Sahin, B., and Akilli, H., "Observation of the vortical flow over a yawed delta wing", Journal of Aerospace Engineering, Vol. 25, 2012, pp. 613-626 https://doi.org/10.1061/(ASCE)AS.1943-5525.0000163
  17. Shim, H. J., Park, S. O., "Low-speed wind-tunnel test results of a BWB-UCAV model", Pocedia Engineering, Vol. 67, 2013, pp. 50-58 https://doi.org/10.1016/j.proeng.2013.12.004
  18. Nelson, R. C., Flight stability and automatic control, 2nd ed., McGraw-Hill, Singapore, 1998
  19. Kim, J. B., Jang, Y. I., Kwon, K. B., "A wind tunnel study on the static stability characteristics of light sport aircraft", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 8, 2012, pp.711-717. https://doi.org/10.5139/JKSAS.2012.40.8.711