Acknowledgement
Supported by : Natural Science Foundation of Shanghai
References
- Astorino, M., Chouly, F. and Fernandez, M. (2009a), "Robin based semi-implicit coupling in fluid-structure interaction: Stability analysis and numerics", SIAM J. Sci. Comput., 31(6), 4041-4065. https://doi.org/10.1137/090749694
- Astorino, M., Chouly, F. and Fernandez, M.A. (2009b), "An added-mass free semi-implicit coupling scheme for fluid-structure interaction", C. R. Acad. Sci. Paris, Ser. I., 347(1-2), 99-104. https://doi.org/10.1016/j.crma.2008.11.003
- Astorino, M. and Grandmont, C. (2010), "Convergence analysis of a projection semi-implicit coupling scheme for fluid-structure interaction problems", Numer. Math., 116(4), 721-767. https://doi.org/10.1007/s00211-010-0311-x
- Badia, S., Quaini, A. and Quarteroni, A. (2008), "Splitting methods based on algebraic factorization for fluid-structure interaction", SIAM J. Sci. Comput., 30(4), 1778-1805. https://doi.org/10.1137/070680497
- Bathe, K.J., Ramm, E. and Wilson, E.L. (1975), "Finite element formulations for large deformation dynamic analysis", Int. J. Numer. Meth. Eng, 9(2), 353-386. https://doi.org/10.1002/nme.1620090207
- Bazilevs, Y., Calo, V.M. and Hughes, T.J.R. (2008), "Isogeometric fluid-structure interaction: theory, algorithms, and computations", Comput. Mech., 43(1), 3-37. https://doi.org/10.1007/s00466-008-0315-x
- Braun, A.L. and Awruch, A.M. (2009), "A partitioned model for fluid-structure interaction problems using hexahedral finite elements with one-point quadrature", Int. J. Numer. Meth. Eng., 79(5), 505-549. https://doi.org/10.1002/nme.2566
- Breuer, M., De Nayer, G. and Münsch, M. (2012), "Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation", J. Fluid. Struct., 29, 107-130. https://doi.org/10.1016/j.jfluidstructs.2011.09.003
- Breuer, M. and Munsch, M. (2008a), "Fluid-structure interaction using LES: A partitioned coupled predictor-corrector scheme", Proc. Appl. Math. Mech., 8(1), 10515-10516. https://doi.org/10.1002/pamm.200810515
- Breuer, M. and Münsch, M. (2008b), "LES meets FSI: Important numerical and modeling aspects", Proceedings of the 7th International ERCOFTAC Workshop on Direct and Large-Eddy Simulation, Trieste, Italy, September 8-10, 2008.
- Causin, P., Gerbeau, J.F. and Nobile, F. (2005), "Added-mass effect in the design of partitioned algorithms for fluid-structure problems", Comput. Method. Appl. M., 194(42-44), 4506-4527. https://doi.org/10.1016/j.cma.2004.12.005
- Choi, C.K. and Yu, W.J. (2000), "A new ALE finite element techniques for wind-structure interactions", Wind Struct., 3(4), 291-302. https://doi.org/10.12989/was.2000.3.4.291
- Chorin, A.J. (1968), "Numerical solution of the Navier-Stokes equations", Math. Comput., 22(104), 745-762. https://doi.org/10.1090/S0025-5718-1968-0242392-2
- Codina, R., Vazquez, M. and Zienkiewicz, O.C. (1998), "A general algorithm for compressible and incompressible flows. Part III: The semi-implicit form", Int. J. Numer. Meth. Fl., 27(1-4), 13-32. https://doi.org/10.1002/(SICI)1097-0363(199801)27:1/4<13::AID-FLD647>3.0.CO;2-8
- Dettmer, W. and Peric, D. (2006a), "A computational framework for fluid-rigid body interaction: Finite element formulation and applications", Comput. Method. Appl. M., 195(13-16), 1633-1666. https://doi.org/10.1016/j.cma.2005.05.033
- Dettmer, W. and Peric, D. (2006b), "A computational framework for fluid-structure interaction: Finite element formulation and applications", Comput. Method. Appl. M., 195(41-43), 5754-5779. https://doi.org/10.1016/j.cma.2005.10.019
- Dettmer, W.G. and Peric, D. (2013), "A new staggered scheme for fluid-structure interaction", Int. J. Numer. Meth. Eng., 93(1), 1-22. https://doi.org/10.1002/nme.4370
- Eswaran, M., Goyal, P. and Reddy, G.R. (2013), "Fluid-structure interaction analysis of sloshing in an annular-sectored water pool subject to surge motion", Ocean Syst. Eng., 3(3), 181-201. https://doi.org/10.12989/ose.2013.3.3.181
- Farhat, C. and Lesoinne, M. (2000), "Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems", Comput. Method. Appl. M., 182(3-4), 499-515. https://doi.org/10.1016/S0045-7825(99)00206-6
- Fernandez, M.A. (2011), "Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit", SeMA J., 55, 59-108. https://doi.org/10.1007/BF03322593
- Fernandez, M.A., Gerbeau, J.F. and Grandmont, C. (2007), "A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid", Int. J. Numer. Meth. Eng., 69(4), 794-821. https://doi.org/10.1002/nme.1792
- Forster, C., Wall, W.A. and Ramm, E. (2007), "Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows", Comput. Method. Appl. M., 196(7), 1278-1293. https://doi.org/10.1016/j.cma.2006.09.002
- Habchi, C., Russeil, S. and Bougeard, D. (2013), "Partitioned solver for strongly coupled fluid-structure interaction", Comput. Fluids, 71, 306-319. https://doi.org/10.1016/j.compfluid.2012.11.004
- He, T. (2015a), "On a partitioned strong coupling algorithm for modeling fluid-structure interaction", Int. J. Appl. Mech., Accepted.
- He, T. (2015b), "A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder", Int. J. Comput. Methods., 12(3), 1550012. https://doi.org/10.1142/S0219876215500127
- He, T., Zhou, D. and Bao, Y. (2012), "Combined interface boundary condition method for fluid-rigid body interaction", Comput. Method. Appl. M., 223-224, 81-102. https://doi.org/10.1016/j.cma.2012.02.007
- He, T., Zhou, D. and Han, Z. (2014), "Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method", Int. J. Comput. Fluid D., 28(6-10), 272-300. https://doi.org/10.1080/10618562.2014.927057
- Hubner, B., Walhorn, E. and Dinkler, D. (2001), Strongly coupled analysis of fluid-structure interaction using space-time finite elements, Cracow, Poland.
- Jan, Y.J. and Sheu, T.W.H. (2004), "Finite element analysis of vortex shedding oscillations from cylinders in the straight channel", Comput. Mech., 3 (2), 81-94.
- Keivani, A. and Shooshtari, A. (2013), "A closed-form solution for a fluid-structure system: shear beam-compressible fluid", Coupled Syst. Mech., 2(2), 127-146. https://doi.org/10.12989/csm.2013.2.2.127
- Keivani, A., Shooshtari, A. and Sani, A.A. (2014), "Forced vibration analysis of a dam-reservoir interaction problem in frequency domain", Coupled Syst. Mech., 3(4), 385-403. https://doi.org/10.12989/csm.2014.3.4.385
- Kuttler, U. and Wall, W. (2008), "Fixed-point fluid-structure interaction solvers with dynamic relaxation", Comput. Mech., 43 (1), 61-72. https://doi.org/10.1007/s00466-008-0255-5
- Lefrancois, E. (2008), "A simple mesh deformation technique for fluid-structure interaction based on a submesh approach", Int. J. Numer. Meth. Eng., 75(9), 1085-1101. https://doi.org/10.1002/nme.2284
- Lesoinne, M. and Farhat, C. (1996), "Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations", Comput. Method. Appl. M., 134(1-2), 71-90. https://doi.org/10.1016/0045-7825(96)01028-6
- Liew, K.M., Wang, W.Q. and Zhang, L.X. (2007), "A computational approach for predicting the hydroelasticity of flexible structures based on the pressure Poisson equation", Int. J. Numer. Meth. Eng., 72(13), 1560-1583. https://doi.org/10.1002/nme.2120
- Liu, X.Q., Qin, N. and Xia, H. (2006), "Fast dynamic grid deformation based on Delaunay graph mapping", J. Comput. Phys., 211(2), 405-423. https://doi.org/10.1016/j.jcp.2005.05.025
- Markou, G.A., Mouroutis, Z.S. and Charmpis, D.C. (2007), "The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems", Comput. Method. Appl. M., 196(4-6), 747-765. https://doi.org/10.1016/j.cma.2006.04.009
- Matthies, H.G. and Steindorf, J. (2003), "Partitioned strong coupling algorithms for fluid-structure interaction", Comput. Struct., 81(8-11), 805-812. https://doi.org/10.1016/S0045-7949(02)00409-1
- Morgenthal, G. and McRobie, A. (2002), "A comparative study of numerical methods for fluid structure interaction analysis in long-span bridge design", Wind Struct., 5(2), 101-114. https://doi.org/10.12989/was.2002.5.2_3_4.101
- Murea, C.M. (2007), "A semi-implicit algorithm based on the augmented Lagrangian method for fluid-structure interaction", Proceedings of the ENUMATH 2007, the 7th European Conference on Numerical Mathematics and Advanced Applications, Graz, Austria, September 10-14, 2007.
- Murea, C.M. and Sy, S. (2009), "A fast method for solving fluid-structure interaction problems numerically", Int. J. Numer. Meth. Fl., 60(10), 1149-1172. https://doi.org/10.1002/fld.1931
- Nagashima, T. and Tsukuda, T. (2013), "Seismic response analysis of an oil storage tank using Lagrangian fluid elements", Coupled Syst. Mech., 2(4), 389-410. https://doi.org/10.12989/csm.2013.2.4.389
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. - ASCE., 85(3), 67-94.
- Nomura, T. and Hughes, T.J.R. (1992), "An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body", Comput. Method. Appl. M., 95(1), 115-138. https://doi.org/10.1016/0045-7825(92)90085-X
- Olivier, M., Dumas, G. and Morissette, J.F. (2009), "A fluid-structure interaction solver for nano-air-vehicle flapping wings", Proceedings of the 19th AIAA Computational Fluid Dynamics, San Antonio, USA, June 22-25, 2009.
- Piperno, S. (1997), "Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations", Int. J. Numer. Meth. Fl., 25(10), 1207-1226. https://doi.org/10.1002/(SICI)1097-0363(19971130)25:10<1207::AID-FLD616>3.0.CO;2-R
- Quaini, A. and Quarteroni, A. (2007), "A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method", Math. Models Methods Appl. Sci., 17(6), 957-983. https://doi.org/10.1142/S0218202507002170
- Sy, S. and Murea, C.M. (2008), "A stable time advancing scheme for solving fluid-structure interaction problem at small structural displacements", Comput. Method. Appl. M., 198(2), 210-222. https://doi.org/10.1016/j.cma.2008.07.010
- Teixeira, P.R.F. and Awruch, A.M. (2005), "Numerical simulation of fluid-structure interaction using the finite element method", Comput. Fluids., 34(2), 249-273. https://doi.org/10.1016/j.compfluid.2004.03.006
- Temam, R. (1968), "Une méthode d'approximation des solutions des équations Navier-Stokes", Bull. Soc. Math. France, 96, 115-152.
- Wall, W.A. and Ramm, E. (1998). "Fluid-structure interaction based upon a stabilized (ALE) finite element method", Proceedings of the 4th World Congress on Computational Mechanics: New Trends and Applications, CIMNE, Barcelona, Spain.
- Wood, C., Gil, A.J. and Hassan, O. (2008), "A partitioned coupling approach for dynamic fluid-structure interaction with applications to biological membranes", Int. J. Numer. Meth. Fl., 57(5), 555-581. https://doi.org/10.1002/fld.1815
- Yamada, T. and Yoshimura, S. (2008), "Line search partitioned approach for fluid-structure interaction analysis of flapping wing", Comput. Model. Eng. Sci., 24(1), 51-60.
- Zeng, D.H. and Ethier, C.R. (2005), "A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains", Finite Elem. Anal. Des., 41(11-12), 1118-1139. https://doi.org/10.1016/j.finel.2005.01.003
- Zienkiewicz, O.C. and Codina, R. (1995), "A general algorithm for compressible and incompressible flow. Part I: The split, characteristic-based scheme", Int. J. Numer. Meth. Fl., 20(8-9), 869-885. https://doi.org/10.1002/fld.1650200812
- Zienkiewicz, O.C., Morgan, K. and Sai, B.V.K.S. (1995), "A general algorithm for compressible and incompressible flow. Part II: Tests on the explicit form", Int. J. Numer. Meth. Fl., 20(8-9), 887-913. https://doi.org/10.1002/fld.1650200813
- Zienkiewicz, O.C., Nithiarasu, P. and Codina, R. (1999), "The characteristic-based-split procedure: An efficient and accurate algorithm for fluid problems", Int. J. Numer. Meth. Fl., 31 (1), 359-392. https://doi.org/10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7
Cited by
- An Overview of the Combined Interface Boundary Condition Method for Fluid–Structure Interaction vol.24, pp.4, 2017, https://doi.org/10.1007/s11831-016-9193-0
- A CBS-based partitioned semi-implicit coupling algorithm for fluid–structure interaction using MCIBC method vol.298, 2016, https://doi.org/10.1016/j.cma.2015.09.020
- Semi-Implicit Coupling of CS-FEM and FEM for the Interaction Between a Geometrically Nonlinear Solid and an Incompressible Fluid vol.12, pp.05, 2015, https://doi.org/10.1142/S0219876215500255
- A smoothed finite element approach for computational fluid dynamics: applications to incompressible flows and fluid–structure interaction 2018, https://doi.org/10.1007/s00466-018-1549-x
- Numerical simulation of vortex induced vibrations of a flexibly mounted wavy cylinder at subcritical Reynolds number vol.133, 2017, https://doi.org/10.1016/j.oceaneng.2016.11.025
- The use of artificial compressibility to improve partitioned semi-implicit FSI coupling within the classical Chorin–Témam projection framework vol.166, 2018, https://doi.org/10.1016/j.compfluid.2018.01.022
- AC-CBS-Based Partitioned Semi-Implicit Coupling Algorithm for Fluid-Structure Interaction Using Stabilized Second-Order Pressure Scheme vol.21, pp.05, 2017, https://doi.org/10.4208/cicp.OA-2016-0106
- On a Partitioned Strong Coupling Algorithm for Modeling Fluid–Structure Interaction vol.07, pp.02, 2015, https://doi.org/10.1142/S1758825115500210
- Combined interface boundary condition method for fluid–structure interaction: Some improvements and extensions vol.109, 2015, https://doi.org/10.1016/j.oceaneng.2015.08.052
- Seismic Response of Base-isolated CRLSS Considering Nonlinear Elasticity of Concrete vol.17, pp.3, 2018, https://doi.org/10.3130/jaabe.17.533
- Strongly coupling partitioned scheme for enhanced added mass computation in 2D fluid-structure interaction vol.5, pp.3, 2015, https://doi.org/10.12989/csm.2016.5.3.235
- Frequency and critical fluid velocity analysis of pipes reinforced with FG-CNTs conveying internal flows vol.24, pp.3, 2015, https://doi.org/10.12989/was.2017.24.3.267
- Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution vol.25, pp.4, 2017, https://doi.org/10.12989/was.2017.25.4.381
- Dynamic analysis of laminated nanocomposite pipes under the effect of turbulent in viscoelastic medium vol.30, pp.2, 2015, https://doi.org/10.12989/was.2020.30.2.133
- Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles vol.9, pp.3, 2015, https://doi.org/10.12989/csm.2020.9.3.281
- Wind Tunnel Test of Wind Load on a Typical Cross Line High-Speed Railway Station vol.25, pp.10, 2015, https://doi.org/10.1007/s12205-021-0702-9
- Fluid-Solid Interaction Simulation Methodology for Coriolis Flowmeter Operation Analysis vol.21, pp.23, 2015, https://doi.org/10.3390/s21238105