DOI QR코드

DOI QR Code

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao (Department of Civil Engineering, Shanghai Normal University)
  • Received : 2014.08.26
  • Accepted : 2015.01.21
  • Published : 2015.03.25

Abstract

In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of Shanghai

References

  1. Astorino, M., Chouly, F. and Fernandez, M. (2009a), "Robin based semi-implicit coupling in fluid-structure interaction: Stability analysis and numerics", SIAM J. Sci. Comput., 31(6), 4041-4065. https://doi.org/10.1137/090749694
  2. Astorino, M., Chouly, F. and Fernandez, M.A. (2009b), "An added-mass free semi-implicit coupling scheme for fluid-structure interaction", C. R. Acad. Sci. Paris, Ser. I., 347(1-2), 99-104. https://doi.org/10.1016/j.crma.2008.11.003
  3. Astorino, M. and Grandmont, C. (2010), "Convergence analysis of a projection semi-implicit coupling scheme for fluid-structure interaction problems", Numer. Math., 116(4), 721-767. https://doi.org/10.1007/s00211-010-0311-x
  4. Badia, S., Quaini, A. and Quarteroni, A. (2008), "Splitting methods based on algebraic factorization for fluid-structure interaction", SIAM J. Sci. Comput., 30(4), 1778-1805. https://doi.org/10.1137/070680497
  5. Bathe, K.J., Ramm, E. and Wilson, E.L. (1975), "Finite element formulations for large deformation dynamic analysis", Int. J. Numer. Meth. Eng, 9(2), 353-386. https://doi.org/10.1002/nme.1620090207
  6. Bazilevs, Y., Calo, V.M. and Hughes, T.J.R. (2008), "Isogeometric fluid-structure interaction: theory, algorithms, and computations", Comput. Mech., 43(1), 3-37. https://doi.org/10.1007/s00466-008-0315-x
  7. Braun, A.L. and Awruch, A.M. (2009), "A partitioned model for fluid-structure interaction problems using hexahedral finite elements with one-point quadrature", Int. J. Numer. Meth. Eng., 79(5), 505-549. https://doi.org/10.1002/nme.2566
  8. Breuer, M., De Nayer, G. and Münsch, M. (2012), "Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation", J. Fluid. Struct., 29, 107-130. https://doi.org/10.1016/j.jfluidstructs.2011.09.003
  9. Breuer, M. and Munsch, M. (2008a), "Fluid-structure interaction using LES: A partitioned coupled predictor-corrector scheme", Proc. Appl. Math. Mech., 8(1), 10515-10516. https://doi.org/10.1002/pamm.200810515
  10. Breuer, M. and Münsch, M. (2008b), "LES meets FSI: Important numerical and modeling aspects", Proceedings of the 7th International ERCOFTAC Workshop on Direct and Large-Eddy Simulation, Trieste, Italy, September 8-10, 2008.
  11. Causin, P., Gerbeau, J.F. and Nobile, F. (2005), "Added-mass effect in the design of partitioned algorithms for fluid-structure problems", Comput. Method. Appl. M., 194(42-44), 4506-4527. https://doi.org/10.1016/j.cma.2004.12.005
  12. Choi, C.K. and Yu, W.J. (2000), "A new ALE finite element techniques for wind-structure interactions", Wind Struct., 3(4), 291-302. https://doi.org/10.12989/was.2000.3.4.291
  13. Chorin, A.J. (1968), "Numerical solution of the Navier-Stokes equations", Math. Comput., 22(104), 745-762. https://doi.org/10.1090/S0025-5718-1968-0242392-2
  14. Codina, R., Vazquez, M. and Zienkiewicz, O.C. (1998), "A general algorithm for compressible and incompressible flows. Part III: The semi-implicit form", Int. J. Numer. Meth. Fl., 27(1-4), 13-32. https://doi.org/10.1002/(SICI)1097-0363(199801)27:1/4<13::AID-FLD647>3.0.CO;2-8
  15. Dettmer, W. and Peric, D. (2006a), "A computational framework for fluid-rigid body interaction: Finite element formulation and applications", Comput. Method. Appl. M., 195(13-16), 1633-1666. https://doi.org/10.1016/j.cma.2005.05.033
  16. Dettmer, W. and Peric, D. (2006b), "A computational framework for fluid-structure interaction: Finite element formulation and applications", Comput. Method. Appl. M., 195(41-43), 5754-5779. https://doi.org/10.1016/j.cma.2005.10.019
  17. Dettmer, W.G. and Peric, D. (2013), "A new staggered scheme for fluid-structure interaction", Int. J. Numer. Meth. Eng., 93(1), 1-22. https://doi.org/10.1002/nme.4370
  18. Eswaran, M., Goyal, P. and Reddy, G.R. (2013), "Fluid-structure interaction analysis of sloshing in an annular-sectored water pool subject to surge motion", Ocean Syst. Eng., 3(3), 181-201. https://doi.org/10.12989/ose.2013.3.3.181
  19. Farhat, C. and Lesoinne, M. (2000), "Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems", Comput. Method. Appl. M., 182(3-4), 499-515. https://doi.org/10.1016/S0045-7825(99)00206-6
  20. Fernandez, M.A. (2011), "Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit", SeMA J., 55, 59-108. https://doi.org/10.1007/BF03322593
  21. Fernandez, M.A., Gerbeau, J.F. and Grandmont, C. (2007), "A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid", Int. J. Numer. Meth. Eng., 69(4), 794-821. https://doi.org/10.1002/nme.1792
  22. Forster, C., Wall, W.A. and Ramm, E. (2007), "Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows", Comput. Method. Appl. M., 196(7), 1278-1293. https://doi.org/10.1016/j.cma.2006.09.002
  23. Habchi, C., Russeil, S. and Bougeard, D. (2013), "Partitioned solver for strongly coupled fluid-structure interaction", Comput. Fluids, 71, 306-319. https://doi.org/10.1016/j.compfluid.2012.11.004
  24. He, T. (2015a), "On a partitioned strong coupling algorithm for modeling fluid-structure interaction", Int. J. Appl. Mech., Accepted.
  25. He, T. (2015b), "A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder", Int. J. Comput. Methods., 12(3), 1550012. https://doi.org/10.1142/S0219876215500127
  26. He, T., Zhou, D. and Bao, Y. (2012), "Combined interface boundary condition method for fluid-rigid body interaction", Comput. Method. Appl. M., 223-224, 81-102. https://doi.org/10.1016/j.cma.2012.02.007
  27. He, T., Zhou, D. and Han, Z. (2014), "Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method", Int. J. Comput. Fluid D., 28(6-10), 272-300. https://doi.org/10.1080/10618562.2014.927057
  28. Hubner, B., Walhorn, E. and Dinkler, D. (2001), Strongly coupled analysis of fluid-structure interaction using space-time finite elements, Cracow, Poland.
  29. Jan, Y.J. and Sheu, T.W.H. (2004), "Finite element analysis of vortex shedding oscillations from cylinders in the straight channel", Comput. Mech., 3 (2), 81-94.
  30. Keivani, A. and Shooshtari, A. (2013), "A closed-form solution for a fluid-structure system: shear beam-compressible fluid", Coupled Syst. Mech., 2(2), 127-146. https://doi.org/10.12989/csm.2013.2.2.127
  31. Keivani, A., Shooshtari, A. and Sani, A.A. (2014), "Forced vibration analysis of a dam-reservoir interaction problem in frequency domain", Coupled Syst. Mech., 3(4), 385-403. https://doi.org/10.12989/csm.2014.3.4.385
  32. Kuttler, U. and Wall, W. (2008), "Fixed-point fluid-structure interaction solvers with dynamic relaxation", Comput. Mech., 43 (1), 61-72. https://doi.org/10.1007/s00466-008-0255-5
  33. Lefrancois, E. (2008), "A simple mesh deformation technique for fluid-structure interaction based on a submesh approach", Int. J. Numer. Meth. Eng., 75(9), 1085-1101. https://doi.org/10.1002/nme.2284
  34. Lesoinne, M. and Farhat, C. (1996), "Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations", Comput. Method. Appl. M., 134(1-2), 71-90. https://doi.org/10.1016/0045-7825(96)01028-6
  35. Liew, K.M., Wang, W.Q. and Zhang, L.X. (2007), "A computational approach for predicting the hydroelasticity of flexible structures based on the pressure Poisson equation", Int. J. Numer. Meth. Eng., 72(13), 1560-1583. https://doi.org/10.1002/nme.2120
  36. Liu, X.Q., Qin, N. and Xia, H. (2006), "Fast dynamic grid deformation based on Delaunay graph mapping", J. Comput. Phys., 211(2), 405-423. https://doi.org/10.1016/j.jcp.2005.05.025
  37. Markou, G.A., Mouroutis, Z.S. and Charmpis, D.C. (2007), "The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems", Comput. Method. Appl. M., 196(4-6), 747-765. https://doi.org/10.1016/j.cma.2006.04.009
  38. Matthies, H.G. and Steindorf, J. (2003), "Partitioned strong coupling algorithms for fluid-structure interaction", Comput. Struct., 81(8-11), 805-812. https://doi.org/10.1016/S0045-7949(02)00409-1
  39. Morgenthal, G. and McRobie, A. (2002), "A comparative study of numerical methods for fluid structure interaction analysis in long-span bridge design", Wind Struct., 5(2), 101-114. https://doi.org/10.12989/was.2002.5.2_3_4.101
  40. Murea, C.M. (2007), "A semi-implicit algorithm based on the augmented Lagrangian method for fluid-structure interaction", Proceedings of the ENUMATH 2007, the 7th European Conference on Numerical Mathematics and Advanced Applications, Graz, Austria, September 10-14, 2007.
  41. Murea, C.M. and Sy, S. (2009), "A fast method for solving fluid-structure interaction problems numerically", Int. J. Numer. Meth. Fl., 60(10), 1149-1172. https://doi.org/10.1002/fld.1931
  42. Nagashima, T. and Tsukuda, T. (2013), "Seismic response analysis of an oil storage tank using Lagrangian fluid elements", Coupled Syst. Mech., 2(4), 389-410. https://doi.org/10.12989/csm.2013.2.4.389
  43. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. - ASCE., 85(3), 67-94.
  44. Nomura, T. and Hughes, T.J.R. (1992), "An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body", Comput. Method. Appl. M., 95(1), 115-138. https://doi.org/10.1016/0045-7825(92)90085-X
  45. Olivier, M., Dumas, G. and Morissette, J.F. (2009), "A fluid-structure interaction solver for nano-air-vehicle flapping wings", Proceedings of the 19th AIAA Computational Fluid Dynamics, San Antonio, USA, June 22-25, 2009.
  46. Piperno, S. (1997), "Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations", Int. J. Numer. Meth. Fl., 25(10), 1207-1226. https://doi.org/10.1002/(SICI)1097-0363(19971130)25:10<1207::AID-FLD616>3.0.CO;2-R
  47. Quaini, A. and Quarteroni, A. (2007), "A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method", Math. Models Methods Appl. Sci., 17(6), 957-983. https://doi.org/10.1142/S0218202507002170
  48. Sy, S. and Murea, C.M. (2008), "A stable time advancing scheme for solving fluid-structure interaction problem at small structural displacements", Comput. Method. Appl. M., 198(2), 210-222. https://doi.org/10.1016/j.cma.2008.07.010
  49. Teixeira, P.R.F. and Awruch, A.M. (2005), "Numerical simulation of fluid-structure interaction using the finite element method", Comput. Fluids., 34(2), 249-273. https://doi.org/10.1016/j.compfluid.2004.03.006
  50. Temam, R. (1968), "Une méthode d'approximation des solutions des équations Navier-Stokes", Bull. Soc. Math. France, 96, 115-152.
  51. Wall, W.A. and Ramm, E. (1998). "Fluid-structure interaction based upon a stabilized (ALE) finite element method", Proceedings of the 4th World Congress on Computational Mechanics: New Trends and Applications, CIMNE, Barcelona, Spain.
  52. Wood, C., Gil, A.J. and Hassan, O. (2008), "A partitioned coupling approach for dynamic fluid-structure interaction with applications to biological membranes", Int. J. Numer. Meth. Fl., 57(5), 555-581. https://doi.org/10.1002/fld.1815
  53. Yamada, T. and Yoshimura, S. (2008), "Line search partitioned approach for fluid-structure interaction analysis of flapping wing", Comput. Model. Eng. Sci., 24(1), 51-60.
  54. Zeng, D.H. and Ethier, C.R. (2005), "A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains", Finite Elem. Anal. Des., 41(11-12), 1118-1139. https://doi.org/10.1016/j.finel.2005.01.003
  55. Zienkiewicz, O.C. and Codina, R. (1995), "A general algorithm for compressible and incompressible flow. Part I: The split, characteristic-based scheme", Int. J. Numer. Meth. Fl., 20(8-9), 869-885. https://doi.org/10.1002/fld.1650200812
  56. Zienkiewicz, O.C., Morgan, K. and Sai, B.V.K.S. (1995), "A general algorithm for compressible and incompressible flow. Part II: Tests on the explicit form", Int. J. Numer. Meth. Fl., 20(8-9), 887-913. https://doi.org/10.1002/fld.1650200813
  57. Zienkiewicz, O.C., Nithiarasu, P. and Codina, R. (1999), "The characteristic-based-split procedure: An efficient and accurate algorithm for fluid problems", Int. J. Numer. Meth. Fl., 31 (1), 359-392. https://doi.org/10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7

Cited by

  1. An Overview of the Combined Interface Boundary Condition Method for Fluid–Structure Interaction vol.24, pp.4, 2017, https://doi.org/10.1007/s11831-016-9193-0
  2. A CBS-based partitioned semi-implicit coupling algorithm for fluid–structure interaction using MCIBC method vol.298, 2016, https://doi.org/10.1016/j.cma.2015.09.020
  3. Semi-Implicit Coupling of CS-FEM and FEM for the Interaction Between a Geometrically Nonlinear Solid and an Incompressible Fluid vol.12, pp.05, 2015, https://doi.org/10.1142/S0219876215500255
  4. A smoothed finite element approach for computational fluid dynamics: applications to incompressible flows and fluid–structure interaction 2018, https://doi.org/10.1007/s00466-018-1549-x
  5. Numerical simulation of vortex induced vibrations of a flexibly mounted wavy cylinder at subcritical Reynolds number vol.133, 2017, https://doi.org/10.1016/j.oceaneng.2016.11.025
  6. The use of artificial compressibility to improve partitioned semi-implicit FSI coupling within the classical Chorin–Témam projection framework vol.166, 2018, https://doi.org/10.1016/j.compfluid.2018.01.022
  7. AC-CBS-Based Partitioned Semi-Implicit Coupling Algorithm for Fluid-Structure Interaction Using Stabilized Second-Order Pressure Scheme vol.21, pp.05, 2017, https://doi.org/10.4208/cicp.OA-2016-0106
  8. On a Partitioned Strong Coupling Algorithm for Modeling Fluid–Structure Interaction vol.07, pp.02, 2015, https://doi.org/10.1142/S1758825115500210
  9. Combined interface boundary condition method for fluid–structure interaction: Some improvements and extensions vol.109, 2015, https://doi.org/10.1016/j.oceaneng.2015.08.052
  10. Seismic Response of Base-isolated CRLSS Considering Nonlinear Elasticity of Concrete vol.17, pp.3, 2018, https://doi.org/10.3130/jaabe.17.533
  11. Strongly coupling partitioned scheme for enhanced added mass computation in 2D fluid-structure interaction vol.5, pp.3, 2015, https://doi.org/10.12989/csm.2016.5.3.235
  12. Frequency and critical fluid velocity analysis of pipes reinforced with FG-CNTs conveying internal flows vol.24, pp.3, 2015, https://doi.org/10.12989/was.2017.24.3.267
  13. Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution vol.25, pp.4, 2017, https://doi.org/10.12989/was.2017.25.4.381
  14. Dynamic analysis of laminated nanocomposite pipes under the effect of turbulent in viscoelastic medium vol.30, pp.2, 2015, https://doi.org/10.12989/was.2020.30.2.133
  15. Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles vol.9, pp.3, 2015, https://doi.org/10.12989/csm.2020.9.3.281
  16. Wind Tunnel Test of Wind Load on a Typical Cross Line High-Speed Railway Station vol.25, pp.10, 2015, https://doi.org/10.1007/s12205-021-0702-9
  17. Fluid-Solid Interaction Simulation Methodology for Coriolis Flowmeter Operation Analysis vol.21, pp.23, 2015, https://doi.org/10.3390/s21238105