DOI QR코드

DOI QR Code

Reconstruction of a near-surface tornado wind field from observed building damage

  • Received : 2014.05.16
  • Accepted : 2015.01.21
  • Published : 2015.03.25

Abstract

In this study, residential building damage states observed from a post-tornado damage survey in Joplin after a 2011 EF 5 tornado were used to reconstruct the near-surface wind field. It was based on well-studied relationships between Degrees of Damage (DOD) of building and wind speeds in the Enhanced Fujita (EF) scale. A total of 4,166 one- or two-family residences (FR12) located in the study area were selected and their DODs were recorded. Then, the wind speeds were estimated with the EF scale. The peak wind speed profile estimated from damage of buildings was used to fit a translating analytical vortex model. Agreement between simulated peak wind speeds and observed damages confirms the feasibility of using post-tornado damage surveys for reconstructing the near-surface wind field. In addition to peak wind speeds, the model can create the time history of wind speed and direction at any given point, offering opportunity to better understand tornado parameters and wind field structures. Future work could extend the method to tornadoes of different characteristics and therefore improve model's generalizability.

Keywords

Acknowledgement

Supported by : National Science Foundation

References

  1. Bech, J., Gaya, M., Aran, M., Figuerola, F., Amaro, J. and Arus, J. (2009), "Tornado damage analysis of a forest area using site survey observations, radar data and a simple analytical vortex model", Atmos. Res., 93(1), 118-130.
  2. Beck, V. and Dotzek, N. (2010), "Reconstruction of near-surface tornado wind fields from forest damage", J. Appl. Meteorol. Climatol., 49(7), 1517-1537. https://doi.org/10.1175/2010JAMC2254.1
  3. Bluestein, H.B., Pazmany, A.L., Galloway, J.C. and Mcintosh, R.E. (1995), "Studies of the substructure of severe convective storms using a mobile 3-mm-wavelength Doppler radar", B. Am. Meteorol. Soc., 76(11), 2155-2169. https://doi.org/10.1175/1520-0477(1995)076<2155:SOTSOS>2.0.CO;2
  4. Bluestein, H.B., Weiss, C.C. and Pazmany, A.L. (2003), "Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part I: Tornadogenesis", Mon. Weather Rev., 131(12), 2954-2967. https://doi.org/10.1175/1520-0493(2003)131<2954:MDROOA>2.0.CO;2
  5. Brown, R.A. and Wood, V.T. (1991), "On the interpretation of single-Doppler velocity patterns within severe thunderstorms", Weather Forecast., 6(1), 32-48. https://doi.org/10.1175/1520-0434(1991)006<0032:OTIOSD>2.0.CO;2
  6. Brown, T.M., Liang, D. and Womble, J.A. (2012), "Predicting ground-based damage states from windstorms using remote-sensing imagery", Wind Struct., 15(5), 369-383. https://doi.org/10.12989/was.2012.15.5.369
  7. Burgers, J.M. (1948), "A mathematical model illustrating the theory of turbulence", Adv. Appl. Mech., 1, 171-199. https://doi.org/10.1016/S0065-2156(08)70100-5
  8. Burgess, D.W., Magsig, M.A., Wurman, J., Dowell, D.C. and Richardson, Y. (2002), "Radar observations of the 3 May 1999 Oklahoma City tornado", Weather Forecast., 17(3), 456-471. https://doi.org/10.1175/1520-0434(2002)017<0456:ROOTMO>2.0.CO;2
  9. Davies-Jones, R., Trapp, R.J. and Bluestein, H.B. (2001), "Tornadoes and tornadic storms", Severe Convective Storms, Meteor. Monogr., 28, 167-221. https://doi.org/10.1175/0065-9401-28.50.167
  10. Doswell III, C.A., Brooks, H.E. and Dotzek, N. (2009), "On the implementation of the enhanced Fujita scale in the USA", Atmos. Res., 93(1-3), 554-563. https://doi.org/10.1016/j.atmosres.2008.11.003
  11. Doswell III, C.A. and Burgess, D.W. (1993), "Tornadoes and tornadic storms: A review of conceptual models", Geophys. Monogr. Ser., 79, 161-172.
  12. Edwards, R., LaDue, J.G., Ferree, J.T., Scharfenberg, K., Maier, C. and Coulbourne, W.L. (2013), "Tornado Intensity Estimation: Past, Present, and Future", B. Am. Meteorol. Soc., 94 (5), 641-653. https://doi.org/10.1175/BAMS-D-11-00006.1
  13. Fujita, T.T. (1971), Proposed Characterization of Tornadoes and Hurricanes by Area and Intensity, University of Chicago, Chicago, Illinois, USA.
  14. Fujita, T.T. (1981), "Tornadoes and downbursts in the context of generalized planetary scales", J. Atmos. Sci., 38(8), 1511-1534. https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
  15. Haan, F.L., Jr., Balaramudu, V.K. and Sarkar, P.P. (2010), "Tornado-induced wind loads on a low-rise building", J. Struct. Eng. - ASCE, 136(1), 106-116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093
  16. Holland, A.P., Riordan, A.J. and Franklin, E.C. (2006), "A simple model for simulating tornado damage in forests", J. Appl. Meteorol. Climatol., 45(12), 1597-1611. https://doi.org/10.1175/JAM2413.1
  17. Karstens, C.D., Gallus Jr, W.A., Lee, B.D. and Finley, C.A. (2013), "Analysis of Tornado-Induced Tree-Fall Using Aerial Photography from the Joplin, MO, and Tuscaloosa-Birmingham, AL, Tornadoes of 2011", J. Appl. Meteorol. Climatol., 52(5), 1049-1068. https://doi.org/10.1175/JAMC-D-12-0206.1
  18. Karstens, C.D., Samaras, T.M., Lee, B.D., Gallus Jr, W.A. and Finley, C.A. (2010), "Near-Ground Pressure and Wind Measurements in Tornadoes", Mon. Weather Rev., 138(7), 2570-2588. https://doi.org/10.1175/2010MWR3201.1
  19. Kopp, G.A. and Morrison, M.J. (2010), "Discussion of "Tornado-Induced Wind Loads on a Low-Rise Building" by F. L. Haan Jr., Vasanth Kumar Balaramudu, and P. P. Sarkar", J. Struct. Eng. - ASCE, 137(12), 1620-1622.
  20. Kosiba, K. and Wurman, J. (2010), "The three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998 tornado", J. Atmos. Sci., 67(9), 3074-3083. https://doi.org/10.1175/2010JAS3416.1
  21. Kosiba, K.A., Trapp, R.J. and Wurman, J. (2008), "An analysis of the axisymmetric three-dimensional low level wind field in a tornado using mobile radar observations", Geophys. Res. Lett., 35(5), L05805. https://doi.org/10.1029/2007GL031851
  22. Lee, W.C. and Wurman, J. (2005), "Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999", J. Atmos. Sci., 62(7), 2373-2393. https://doi.org/10.1175/JAS3489.1
  23. Lewellen, D.C. and Lewellen, W.S. (2007), "Near-surface intensification of tornado vortices", J. Atmos. Sci., 64(7), 2176-2194. https://doi.org/10.1175/JAS3965.1
  24. Lewellen, D.C. and Zimmerman, M.I. (2008), "Using simulated tornado surface marks to help decipher near-ground wind fields", Preprints, 24th Conf. on Severe Local Storms, Amer. Meteor. Soc. B, Savannah, GA, USA.
  25. Luo, J., Liang, D., Kafali, C., Li, R. and Brown, T. M. (2014), "Enhanced remote-sensing scale for wind damage assessment", Wind Struct., 19(3), 321-327 https://doi.org/10.12989/was.2014.19.3.321
  26. Mallen, K.J., Montgomery, M.T. and Wang, B. (2005), "Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency", J. Atmospheric Sci., 62(2), 408-425. https://doi.org/10.1175/JAS-3377.1
  27. McMillan, A., Adams, B. J., Reynolds, A., Brown, T., Liang, D., and Womble, J. A. (2008), "Advanced technology for rapid tornado damage assessment following the „Super Tuesday‟ tornado outbreak of February 2008", MCEER Report, University of Buffalo, Buffalo, NY.
  28. Mehta, K.C. (2013), "Development of the EF-Scale for Tornado Intensity", J. Disaster Res., 8(6), 1034-1041. https://doi.org/10.20965/jdr.2013.p1034
  29. NIST (2013), Technical Investigation of the May 22, 2011, Tornado in Joplin, Missouri, National Institute of Standards and Technology, Gaithersburg, MD, USA.
  30. NWS (2011), "Joplin Tornado Event Summary - May 22, 2011", (accessed September 21, 2013).
  31. Peterson, R.E. (1992), "Johannes Letzmann: A pioneer in the study of tornadoes", Weather Forecast., 7(1), 166-184. https://doi.org/10.1175/1520-0434(1992)007<0166:JLAPIT>2.0.CO;2
  32. Potvin, C.K., Shapiro, A., Yu, T.Y., Gao, J. and Xue, M., (2009), "Using a Low-Order Model to Detect and Characterize Tornadoes in Multiple-Doppler Radar Data", Mon. Weather Rev., 137(4), 1230-1249. https://doi.org/10.1175/2008MWR2446.1
  33. Rankine, W.J.M. (1882), A Manual of Applied Mechanics, (10th Ed.), Charles Griffin and Company, London, UK.
  34. Rott, N. (1958), "On the viscous core of a line vortex", Z. Für Angew. Math. Phys. ZAMP, 9(5-6), 543-553. https://doi.org/10.1007/BF02424773
  35. Schunn, C.D. and Wallach, D. (2005), "Evaluating goodness-of-fit in comparison of models to data", (Ed. W. Tack), Psychologie Der Kognition: Reden and Vortrage Anlasslich Der Emeritierung von Werner Tack, University of Saarland Press, Saarbrueken, Germany.
  36. Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures: Fundamentals and Applications to Design, (3rd Ed.), John Wiley, New York, USA.
  37. Sullivan, R.D. (1959), "A Two-Cell Vortex Solution of the Navier-Stokes Equations", J. Aerosp. Sci., 26(11), 767-768. https://doi.org/10.2514/8.8303
  38. Tanamachi, R.L., Bluestein, H.B., Lee, W.C., Bell, M. and Pazmany, A. (2007), "Ground-based velocity track display (GBVTD) analysis of W-band Doppler radar data in a tornado near Stockton, Kansas, on 15 May 1999", Mon. Weather Rev., 135(3), 783-800. https://doi.org/10.1175/MWR3325.1
  39. Toth, M., Trapp, R.J., Wurman, J. and Kosiba, K.A. (2013), "Comparison of Mobile-Radar Measurements of Tornado Intensity with Corresponding WSR-88D Measurements", Weather Forecast., 28(2), 418-426. https://doi.org/10.1175/WAF-D-12-00019.1
  40. Vickery, P.J., Skerlj, P.F., Lin, J., Twisdale Jr, L.A., Young, M.A. and Lavelle, F.M. (2006), "HAZUS-MH hurricane model methodology. II: Damage and loss estimation", Nat. Hazards Rev., 7, 94-103. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(94)
  41. WISE (2006), A Recommendation for an Enhanced Fujita Scale (EF-Scale), Wind Science and Engineering Research Center, Texas Tech University, Lubbock, Texas, USA.
  42. Wood, V.T. and Brown, R.A. (2011), "Simulated tornadic vortex signatures of tornado-like vortices having one-and two-celled structures", J. Appl. Meteorol. Climatol., 50(11), 2338-2342. https://doi.org/10.1175/JAMC-D-11-0118.1
  43. Wood, V.T. and White, L.W. (2011), "A new parametric model of vortex tangential-wind profiles: Development, testing, and verification", J. Atmos. Sci., 68(5), 990-1006. https://doi.org/10.1175/2011JAS3588.1
  44. Womble, J.A., Ghosh, S., Adams, B.J. and Friedland, C.J. (2006), Advanced Damage Detection for Hurricane Katrina: Integrated Remote Sensing & VIEWS TM Field Reconnaissance, MCEER Report, University of Buffalo, Buffalo, NY, USA.
  45. Wurman, J. and Alexander, C.R. (2005), "The 30 May 1998 Spencer, South Dakota, storm. Part II: comparison of observed damage and radar-derived winds in the tornadoes", Mon. Weather Rev., 133(1), 97-119. https://doi.org/10.1175/MWR-2856.1
  46. Wurman, J. and Gill, S. (2000), "Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado", Mon. Weather Rev., 128(7), 2135-2164. https://doi.org/10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2
  47. Wurman, J., Kosiba, K., Markowski, P., Richardson, Y., Dowell, D. and Robinson, P. (2010), "Finescale single-and dual-doppler analysis of tornado intensification, maintenance, and dissipation in the orleans, nebraska, supercell", Mon. Weather Rev., 138(12), 4439-4455. https://doi.org/10.1175/2010MWR3330.1
  48. Wurman, J., Kosiba, K. and Robinson, P. (2013), "In Situ, Doppler Radar, and Video Observations of the Interior Structure of a Tornado and the Wind-Damage Relationship", B. Am. Meteorol. Soc., 94(6), 835-846. https://doi.org/10.1175/BAMS-D-12-00114.1
  49. Wurman, J., Robinson, P., Alexander, C. and Richardson, Y. (2007), "Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas", B. Am. Meteorol. Soc., 88(1), 31-46. https://doi.org/10.1175/BAMS-88-1-31
  50. Wurman, J., Straka, J., Rasmussen, E., Randall, M. and Zahrai, A. (1997), "Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar", J. Atmos. Ocean. Tech., 14(6), 1502-1512. https://doi.org/10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2
  51. Zhang, W. and Sarkar, P.P. (2009), "Influence of surrounding buildings on tornado-induced wind loads of a low-rise building", Proceedings of the 11th American Conference on Wind Engineering, San Juan, Puerto Rico, USA.
  52. Zrnic, D., Burgess, D.W. and Hennington, L. (1985), "Doppler spectra and estimated windspeed of a violent tornado", J. Clim. Appl. Meteorol., 24(10), 1068-1081. https://doi.org/10.1175/1520-0450(1985)024<1068:DSAEWO>2.0.CO;2

Cited by

  1. Assessment of Building Damage Risk by Natural Disasters in South Korea Using Decision Tree Analysis vol.10, pp.4, 2018, https://doi.org/10.3390/su10041072
  2. Multi-Scale Remote Sensing of Tornado Effects vol.4, pp.None, 2018, https://doi.org/10.3389/fbuil.2018.00066