DOI QR코드

DOI QR Code

A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations

  • Meksi, Abdeljalil (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de genie civil) ;
  • Benyoucef, Samir (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de genie civil) ;
  • Houari, Mohammed Sid Ahmed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de genie civil) ;
  • Tounsi, Abdelouahed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de genie civil)
  • Received : 2014.09.02
  • Accepted : 2014.12.16
  • Published : 2015.03.25

Abstract

In this work, a novel simple first-order shear deformation plate theory based on neutral surface position is developed for bending and free vibration analysis of functionally graded plates and supported by either Winkler or Pasternak elastic foundations. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. Numerical results of present theory are compared with results of the traditional first-order and the other higher-order theories reported in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending and free vibration behaviors of functionally graded plates.

Keywords

References

  1. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  2. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  3. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  4. Bachir Bouiadjra, R., Adda Bedia, E.A. and Tounsi, A. (2013), "Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory", Struct. Eng. Mech., 48, 547 - 567. https://doi.org/10.12989/sem.2013.48.4.547
  5. Baferani, AH, Saidi, AR and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842- 1853. https://doi.org/10.1016/j.compstruct.2011.01.020
  6. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  7. Benachour, A., Daouadji Tahar, H., Ait Atmane, H., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B, 42, 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  8. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale rffects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020
  9. Benyoucef, S., Mechab, I., Tounsi, A., Fekrar, A., Ait Atmane, H. and Adda Bedia, E.A. (2010), "Bending of thick functionally graded plates resting on Winkler-Pasternak elastic foundations", Mech. Compos. Mater., 46(4), 425-434. https://doi.org/10.1007/s11029-010-9159-5
  10. Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N. and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 41, 225404. https://doi.org/10.1088/0022-3727/41/22/225404
  11. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  12. Birman, V. and Byrd, LW. (2007), "Modeling and analysis of functionally graded materials and structures", ASME Appl. Mech. Rev., 60, 195-216. https://doi.org/10.1115/1.2777164
  13. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14, 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  14. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  15. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  16. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  17. Brischetto, S. (2013), "Exact elasticity solution for natural frequencies of functionally graded simplysupported structures", CMES: Comput. Model. Eng. Sci., 95(5), 361-400.
  18. Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Tech., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005
  19. Cheng, Z.Q. and Batra, R.C. (2000), "Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories", Arch. Mech., 52, 143-158.
  20. Cheng, Z.Q. and Kitipornchai, S. (1999), "Membrane analogy of buckling and vibration of inhomogeneous plates", J. Eng. Mech., ASCE, 125, 1293-1297. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:11(1293)
  21. Croce, L.D. and Venini, P. (2004), "Finite elements for functionally graded Reissner-Mindlin plates", Comput. Meth. Appl. Mech. Eng., 193, 705-725. https://doi.org/10.1016/j.cma.2003.09.014
  22. Curiel Sosa, J.L., Anwar Beg, O. and Liebana Murillo, J.M. (2013), "Finite element analysis of structural instability using a switching implicit-explicit technique", Int. J. Comp. Meth. Eng. Sci. Mech., 14, 452- 464. https://doi.org/10.1080/15502287.2013.784383
  23. Curiel Sosa, J.L., Munoz, J.J., Pinho, S.T. and Anwar Beg, O. (2012), "(XFEM) Simulation of damage in laminates", Applied Sciences and Engineering (ECCOMAS 2012), Eds. Eberhardsteiner, J. et al., Vienna, Austria, September.
  24. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  25. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53, 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  26. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49, 795-810. https://doi.org/10.1007/s11012-013-9827-3
  27. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5- unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  28. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., ASCE, 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  29. Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda Bedia, E.A. (2008), "Sound Wave Propagation in Single- Walled Carbon Nanotubes using Nonlocal Elasticity", Physica E, 40, 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
  30. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011a), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002
  31. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011b), "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure", Compos. Struct., 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007
  32. Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004
  33. Huang, Z.Y., Lü, C.F. and Chen, W.Q. (2008), "Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations", Compos. Struct., 85, 95-104. https://doi.org/10.1016/j.compstruct.2007.10.010
  34. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 135007.
  35. Koizumi, M. (1993), "Concept of FGM", Ceramic Tran., 34, 3-10.
  36. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28, 1-4.
  37. Lam, K.Y., Wang, C.M. and He, X.Q. (2000), "Canonical exact solutions for Levy-plates on two-parameter foundation using Green's functions", Eng. Struct., 22, 364-378. https://doi.org/10.1016/S0141-0296(98)00116-3
  38. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Exact solutions for free vibrations of functionally graded thick plates on elastic foundations", Mech. Adv. Mater. Struct., 16, 576-584. https://doi.org/10.1080/15376490903138888
  39. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model. (in Press)
  40. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", ASME J. Appl. Mech., 18, 31-38.
  41. Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 641-650. https://doi.org/10.1007/s11029-013-9380-0
  42. Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Base. Des. Struct. Mach., 41, 421-433. https://doi.org/10.1080/15397734.2013.763713
  43. Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation", J. Sound. Vib, 318, 176-192. https://doi.org/10.1016/j.jsv.2008.03.056
  44. Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solid. Struct., 35, 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
  45. Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plate by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B, 35, 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004
  46. Rashidi, M.M., Shooshtari, A. and Anwar Beg, O. (2012), "Homotopy perturbation study of nonlinear vibration of Von Kármán rectangular plates", Comput. Struct., 106/107, 46-55. https://doi.org/10.1016/j.compstruc.2012.04.004
  47. Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons Inc.
  48. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  49. Reissner, E. (1950), "On a variational theorem in elasticity", J. Math. Phys. (Cambridge, Mass.), 29, 90-95. https://doi.org/10.1002/sapm195029190
  50. Semmah, A., Tounsi, A., Zidour, M., Heireche, H. and Naceri, M. (2014), "Effect of chirality on critical buckling temperature of a zigzag single-walled carbon nanotubes using nonlocal continuum theory", Full., Nanotub. Carb. Nanostr., 23, 518-522.
  51. Sadoune, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2014), "A novel first-order shear deformation theory for laminated composite plates", Steel Compos. Struct., 17(3), 321-338 https://doi.org/10.12989/scs.2014.17.3.321
  52. Thai, H.T. and Choi, D.H. (2013a), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019
  53. Thai, H.T. and Choi, D.H., (2013b), "A simple first-order shear deformation theory for laminated composite plates", Compos. Struct., 106, 754-763. https://doi.org/10.1016/j.compstruct.2013.06.013
  54. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013a), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  55. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013b), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  56. Tounsi, A., Semmah, A. and Bousahla, A.A. (2013c), "Thermal buckling behavior of nanobeam using an efficient higher-order nonlocal beam theory", J. Nanomech. Micromech., ASCE, 3, 37-42. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000057
  57. Vel, S.S. and Batra, R.C. (2002), "Three-dimensional analysis of transient thermal stresses in functionally graded plates", Int. J. Solid. Struct., 40, 7181-7196.
  58. Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound. Vib., 272, 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7
  59. Wu, C.P., Chiu, K.H. and Wang, Y.M. (2011), "RMVT-based meshless collocation and element free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates", Compos. Struct., 93, 923-943. https://doi.org/10.1016/j.compstruct.2010.07.001
  60. Wu, C.P. and Chiu, K.H. (2011), "RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates", Compos. Struct., 93, 1433-1448. https://doi.org/10.1016/j.compstruct.2010.11.015
  61. Wu, C.P. and Li, H.Y. (2010b), "An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates", Compos. Struct., 92, 2591-2605. https://doi.org/10.1016/j.compstruct.2010.01.022
  62. Wu, C.P. and Li, H.Y. (2010), "RMVT- and PVD-based finite layer methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates", Comput. Mater. Contin., 19, 155-198.
  63. Xiang, Y., Wang, C.M. and Kitipornchai, S. (1994), "Exact vibration solution for initially stressed Mindlin plates on Pasternak foundation", Int. J. Mech. Sci., 36, 311-316. https://doi.org/10.1016/0020-7403(94)90037-X
  64. Xiang, Y. (2003), "Vibration of rectangular Mindlin plates resting on non-homogenous elastic foundations", Int. J. Mech. Sci., 45, 1229-1244. https://doi.org/10.1016/S0020-7403(03)00141-3
  65. Yahoobi, H. and Feraidoon, A. (2010), "Influence of neutral surface position on deflection of functionally graded beam under uniformly distributed load", World Appl. Sci. J., 10(3), 337-341. https://doi.org/10.3923/jas.2010.337.342
  66. Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48(8), 2019-2035. https://doi.org/10.1007/s11012-013-9720-0
  67. Yamanouchi, M., Koizumi, M., Hirai, T. and Shiota I. (1990), Proceedings of the 1st International Symposium Functionally Gradient Material, Japan.
  68. Yang, J., Liew, K.M. and Kitipornchai, S. (2005), "Second-order statistics of the elastic buckling of functionally graded rectangular plates", Compos. Sci. Tech., 65, 1165-1175. https://doi.org/10.1016/j.compscitech.2004.11.012
  69. Yang, J. and Shen, H.S. (2001), "Dynamic response of initially stressed functionally graded rectangular thin plates", Compos. Struct., 54, 497-508. https://doi.org/10.1016/S0263-8223(01)00122-2
  70. Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84, 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
  71. Yin, S., Hale, J.S., Yu, T., Bui, T.Q. and Bordas, S.P.A. (2014), "Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates", Compos. Struct., 118, 121- 138. https://doi.org/10.1016/j.compstruct.2014.07.028
  72. Zenkour, A.M., Allam, M.N.M., Shaker, M.O. and Radwan, A.F. (2011), "On the simple and mixed firstorder theories for plates resting on elastic foundations", Acta Mechanica, 220, 33-46. https://doi.org/10.1007/s00707-011-0453-7
  73. Zenkour, A.M. and Radwan, A.F. (2013), "On the simple and mixed first-order theories for functionally graded plates resting on elastic foundations", Meccanica, 48, 1501-1516. https://doi.org/10.1007/s11012-012-9680-9
  74. Zhong, Z. and Yu, T. (2006), "Vibration of a simply supported functionally graded piezoelectric rectangular plate", Smart. Mater. Struct, 15, 1404-1412. https://doi.org/10.1088/0964-1726/15/5/029
  75. Zhou, D., Cheung, Y.K., Lo, S.H. and Au, F.T.K. (2004), "Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundation", Int. J. Numer. Meth. Eng., 59, 1313-1334. https://doi.org/10.1002/nme.915
  76. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
  2. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  3. A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.047
  4. Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression vol.115-116, 2016, https://doi.org/10.1016/j.ijmecsci.2016.07.014
  5. A refined theory with stretching effect for the flexure analysis of laminated composite plates vol.11, pp.5, 2016, https://doi.org/10.12989/gae.2016.11.5.671
  6. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  7. Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations vol.10, pp.6, 2016, https://doi.org/10.12989/eas.2016.10.6.1429
  8. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  9. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  10. Thermodynamic effect on the bending response of elastic foundation FG plate by using a novel four variable refined plate theory vol.41, pp.8, 2018, https://doi.org/10.1080/01495739.2018.1452169
  11. Bending analysis of an imperfect advanced composite plates resting on the elastic foundations vol.5, pp.3, 2015, https://doi.org/10.12989/csm.2016.5.3.269
  12. A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation vol.23, pp.3, 2015, https://doi.org/10.12989/scs.2017.23.3.317
  13. A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates vol.62, pp.4, 2017, https://doi.org/10.12989/sem.2017.62.4.401
  14. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2015, https://doi.org/10.12989/sss.2017.19.6.601
  15. A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
  16. An original single variable shear deformation theory for buckling analysis of thick isotropic plates vol.63, pp.4, 2017, https://doi.org/10.12989/sem.2017.63.4.439
  17. A simple analytical approach for thermal buckling of thick functionally graded sandwich plates vol.63, pp.5, 2015, https://doi.org/10.12989/sem.2017.63.5.585
  18. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2015, https://doi.org/10.12989/gae.2017.13.3.385
  19. Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory vol.20, pp.3, 2015, https://doi.org/10.12989/sss.2017.20.3.369
  20. A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2015, https://doi.org/10.12989/scs.2017.25.2.157
  21. A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams vol.64, pp.2, 2015, https://doi.org/10.12989/sem.2017.64.2.145
  22. Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
  23. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2015, https://doi.org/10.12989/scs.2017.25.3.257
  24. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
  25. A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2015, https://doi.org/10.12989/sem.2017.64.6.737
  26. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.693
  27. A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.717
  28. An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.735
  29. Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.311
  30. Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2015, https://doi.org/10.12989/gae.2018.15.1.711
  31. Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory vol.22, pp.1, 2018, https://doi.org/10.12989/sss.2018.22.1.121
  32. A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates vol.22, pp.3, 2015, https://doi.org/10.12989/sss.2018.22.3.303
  33. Robust quasi 3D computational model for mechanical response of FG thick sandwich plate vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.571
  34. Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation vol.70, pp.6, 2015, https://doi.org/10.12989/sem.2019.70.6.683
  35. Asymmetric Thermal Buckling of Imperfect FGM Circular Plates with Rotationally Restrained Edge vol.20, pp.12, 2015, https://doi.org/10.1142/s0219455420501278
  36. A refined HSDT for bending and dynamic analysis of FGM plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.105
  37. Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT vol.36, pp.3, 2015, https://doi.org/10.1007/s00366-019-00732-1
  38. Thermodynamic behavior of functionally graded sandwich plates resting on different elastic foundation and with various boundary conditions vol.23, pp.3, 2015, https://doi.org/10.1177/1099636219851281
  39. Buckling and free vibration characteristics of embedded inhomogeneous functionally graded elliptical plate in hygrothermal environment vol.235, pp.5, 2015, https://doi.org/10.1177/1464420720986899
  40. Free vibration analysis of FGM plates on Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT vol.264, pp.None, 2015, https://doi.org/10.1016/j.compstruct.2021.113643