DOI QR코드

DOI QR Code

Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress

  • 투고 : 2014.02.17
  • 심사 : 2014.11.06
  • 발행 : 2015.03.25

초록

This paper introduces the combined effect of electric field, magnetic field and thermal field on edge wave propagating in a homogeneous isotropic prestressed plate of finite thickness and infinite length. The dispersion relation of edge wave has been obtained by using classical dynamical theory of thermoelasticity. The phase velocity has been computed and shown graphically for various initial stress parameter, electro-magneto parameter, electric parameter and thermoelastic coupling parameter.

키워드

참고문헌

  1. Abd-Alla, A.M. and Mahmoud, S.R. (2013), "On the problem of radial vibrations in non-homogeneity isotropic cylinder under influence of initial stress and magnetic field", J. Vib. Control, 19(9), 1283-1293. https://doi.org/10.1177/1077546312441043
  2. Biot, M.A. (1965), Mechanics of Incremental Deformations, John Wiley and Sons, Inc., New York.
  3. Coman, C.D. (2010), "Edge-wave buckling of rolled elastic strips: asymptotic results", Acta Mechanica, 211, 1-2, 101-113. https://doi.org/10.1007/s00707-009-0206-z
  4. Dai, H.L. and Rao, Y.N. (2011), "Investigation on electro-magneto thermoelastic interaction of functionally graded piezoelectric hollow spheres", Struct. Eng. Mech., 40(1), 49-64. https://doi.org/10.12989/sem.2011.40.1.049
  5. Das, P. and Kanoria, M. (2012), "Magneto-thermo-elastic response in a perfectly conducting medium with three-phase-lag", Acta Mechanica, 223(4), 811-828. https://doi.org/10.1007/s00707-011-0591-y
  6. Dey, S. and De, P.K. (2009), "Edge wave propagation in an incompressible anisotropic initially stressed plate of finite thickness", Int. J. Comput. Cognit., 7(3), 55-59.
  7. Kakar, R. (2014), "Magneto-electro-viscoelastic torsional waves in aeolotropic tube under initial compression stress", Lat. Am. J. Solid. Struct., 11, 580-597. https://doi.org/10.1590/S1679-78252014000400002
  8. Kocaturk, T. and Akbaş, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
  9. Kondaiah, P., Shankar, K. and Ganesan, N. (2013), "Pyroelectric and pyromagnetic effects on behavior of magneto-electro-elastic plate", Coupl. Syst. Mech., 2(1), 1-22. https://doi.org/10.12989/csm.2013.2.1.001
  10. Kondaiah, P., Shankar, K. and Ganesan, N. (2012), "Studies on magneto-electro-elastic cantilever beam under thermal environment", Coupl. Syst. Mech., 1(2), 205-217. https://doi.org/10.12989/csm.2012.1.2.205
  11. Kumar, R. and Partap, G. (2011), "Vibration analysis of wave motion in micropolar thermoviscoelastic plate", Struct. Eng. Mech., 39(6), 861-875. https://doi.org/10.12989/sem.2011.39.6.861
  12. Kuang, Z.B. (2013), "Two theoretical problems in electro-magneto-elastic analysis", Acta Mechanica, 224(6), 1201-1212. https://doi.org/10.1007/s00707-013-0865-7
  13. Kuang, Z.B. (2014), "An applied electro-magneto-elastic thin plate theory", Acta Mechanica, 225(4-5), 1153-1166. https://doi.org/10.1007/s00707-013-1062-4
  14. Mehditabar, A., Akbari Alashti, R. and Pashaei, M.H. (2014), "Magneto-thermo-elastic analysis of a functionally graded conical shell", Steel Compos. Struct., 16(1), 79-98.
  15. Othman, M.I.A. (2010), "Generalized electro-magneto-thermoelasticity in case of thermal shock plane waves for a finite conducting half-space with two relaxation times", Mech. Mech. Eng., 14(1), 5-30.
  16. Ponnusamy, P. and Selvamani, R. (2012), "Wave propagation in a generalized thermo elastic plate embedded in elastic medium", Interact. Multisc. Mech., 5(1), 13-26. https://doi.org/10.12989/imm.2012.5.1.013
  17. Niraula, O.P. and Noda, N. (2010), "Derivation of material constants in non-linear electro-magneto-thermoelasticity", J. Therm. Stress., 33(11), 1011-1034. https://doi.org/10.1080/01495739.2010.510714
  18. Niraula, O.P. and Wang, B.L. (2006), "A magneto-electro-elastic material with a penny-shaped crack subjected to temperature loading", Acta Mechanica, 187(1-4), 151-168. https://doi.org/10.1007/s00707-006-0394-8
  19. Selvamani, R. and Ponnusamy, P. (2013), "Wave propagation in a generalized thermo elastic circular plate immersed in fluid", Struct. Eng. Mech., 46(6), 827-842. https://doi.org/10.12989/sem.2013.46.6.827
  20. Ya, J., Xiao, G. and Tian, J.L. (2013), "Fractional order generalized electro-magneto-thermo-elasticity", Eur. J. Mech.s, 42, 188-202. https://doi.org/10.1016/j.euromechsol.2013.05.006
  21. Yu, J., Ma, Q. and Su, S. (2008), "Wave propagation in nonhomogeneous magneto-electro-elastic plates", J. Sound Vib., 317(2), 250-64. https://doi.org/10.1016/j.jsv.2008.03.008
  22. Zhu, B.J. and Shi, Y.L. (2008), "Wave propagation in non-homogeneous magneto electro-elastic hollow cylinders", Ultrasonic, 48(8), 664-77. https://doi.org/10.1016/j.ultras.2008.03.005

피인용 문헌

  1. Rheological model of Love wave propagation in viscoelastic layered media under gravity vol.11, pp.3, 2015, https://doi.org/10.1108/MMMS-01-2015-0003
  2. Generalized electro-magneto-thermoelasticity with two-temperature and internal heat source in a finite conducting medium under three theories vol.31, pp.5, 2015, https://doi.org/10.1080/17455030.2019.1637552