DOI QR코드

DOI QR Code

과학·기술관련 사회쟁점(SSI)에 대한 학생들의 주요 의사결정 논점의 기술의 본성(NOT)적 해석

Analysis of Students' Socioscientific Decision-Making from the Nature of Technology Perspectives

  • 투고 : 2015.01.08
  • 심사 : 2015.02.25
  • 발행 : 2015.02.28

초록

본 연구에서는 학생들의 과학 기술관련 사회쟁점(SSI)에 대한 의사결정과정을 탐색하는 방안으로 기술의 본성(NOT)을 제안하였다. SSI 의사결정과정에서 자주 언급되는 논점들은 과학 지식 및 지식의 형성과정에서 추출된 과학의 본성보다는 인간이 필요로 하는 도구를 만들거나 사회에서 벌어지는 다양한 문제를 해결하고자 개발되는 기술과 더욱 밀접하게 연관되기 때문이다. 이에, 서울 소재 대학교에 재학중인 45명의 학생들을 대상으로 GMO(황금쌀)에 대한 시나리오를 제공한 후, 그에 대한 의사결정 내용을 글로 작성하도록 하였다. 글쓰기에서 드러난 학생들의 주요 논점은 네 가지로 요약될 수 있었다. 첫째, 과학기술 인공물이 사회문제를 해결할 수 있을까? 둘째, 해당 사회문제를 해결하기 위한 다른 대안은 없을까? 셋째 과학기술 개발과정 및 관련 제품이 유통되고 사용되는 과정에서 발생할 수 있는 부작용 혹은 문제점은 없을까? 넷째, 과학기술의 불확실성이 존재하는 상황에서 어떤 대응을 해야 할까? 연구자는 이 네 가지 논점을 문헌에서 추출한 기술의 본성(NOT)(문제의 해결안으로서의 기술, 문화적 맥락과 가치의 역할, 기술적 트레이드오프, 시스템으로서의 기술, 기술적 진보)의 관점에서 해석하였다. 그 결과, NOS와 달리 NOT는 학생들의 주요 논점에서 명시적으로 드러났으며, 이를 통해 학생들의 기술에 대한 이해 수준도 가늠해 볼 수도 있었다. 이는 SSI 맥락에서 합리적인 의사결정 능력을 함양하는 방안으로서 NOT의 적용가능성을 시사한다.

Since socioscientific issues (SSI) reflect various characteristics of new technologies designed to meet the incessant human needs in the contemporary society, this study explores the feasibility of adapting nature of technology (NOT) to analyze students' socioscientific decision-making. To achieve the aim, forty-five college students enrolled in a liberal arts course on science and technology studies participated in the study and responded to a GMO (golden rice) scenario in a written form. Four major viewpoints were identified from their writing: 1) is the technological artifact able to solve a societal problem?, 2) are there some alternatives to solve the societal problem?, 3) what kinds of side effects or flaws could turn up during distribution and consumption of the technological artifact?, and 4) can we cope with the technological uncertainty? We revisited the viewpoints within the NOT framework (technology as a 'fix,' cultural context and role of values, technological trade-offs, technology as a system, and technological progression). As a result, unlike NOS, NOT were quite explicitly represented in their decision-making and students' level of understanding on NOT varied. It indicates that NOT can be a promising construct for cultivating informed SSI decision-making.

키워드

참고문헌

  1. Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students' argumentation in group discussions on a socio-scientific issue. Research in Science Education, 38(1), 67-90. https://doi.org/10.1007/s11165-007-9040-2
  2. Arthur, W. B. (2009). The nature of technology: What it is and how it evolves: Free Press. New York.
  3. Bell, R. L., & Lederman, N. G. (2003). Understandings of the nature of science and decision making on science and technology based issues. Science Education, 87(3), 352-377. https://doi.org/10.1002/sce.10063
  4. Chang, H., & Lee, H. (2010). College students' decision-making tendencies in the context of socioscientific issues (SSI). Journal of Korean Association in Science Education, 31(1), 14-31.
  5. Clough, M. P. (2013). Teaching about the nature of technology: Issues and pedagogical practices. In M. P. Clough, J. K. Olson, & D. S. Niederhauser (Eds.). The nature of technology: Implications for learning and teaching (pp. 373-390). Sense Publishers. Netherlands.
  6. Eastwood, J. L., Sadler, T. D., Zeidler, D. L., Lewis, A., Amiri, L., & Applebaum, S. (2012). Contextualizing nature of science instruction in socioscientific issues. International Journal of Science Education, 34(15), 2289-2315. https://doi.org/10.1080/09500693.2012.667582
  7. Grace, M. M., & Ratcliffe, M. (2002). The science and values that young people draw upon to make decisions about biological conservation issues. International Journal of Science Education, 24(11), 1157-1169. https://doi.org/10.1080/09500690210134848
  8. Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645-670. https://doi.org/10.1080/09500690305021
  9. Hong, S. (2010) The latest trend in sociology of technology. In Philosophy of Science Education Committee in Hanyang Univ. (Ed.), Philosophical understanding of science and technology, (pp. 91-107). Hanyang University Press. Seoul.
  10. Hughes, T. P. (2012). The evolution of large technological Systems. In W. E. Bijker, T. P. Hughes, T. Pinch & D. G. Douglas (Eds.), The social construction of technological systems: New directions in the sociology and history of technology (pp. 45-74). MIT Press. Cambridge.
  11. International Technology Education Association (2000). Standards for technological literacy: Content for the study of technology. International Technology Education Association. Virginia.
  12. Khishfe, R. (2012). Nature of science and decision-making. International Journal of Science Education, 34(1), 67-100. https://doi.org/10.1080/09500693.2011.559490
  13. Kruse, J. W. (2013). Implications of the nature of technology for teaching and teacher education. In M. P. Clough, J. K. Olson, & D. S. Niederhauser (Eds.). The nature of technology: Implications for learning and teaching, (pp. 345-369). Sense Publishers. Netherlands.
  14. Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331-359. https://doi.org/10.1002/tea.3660290404
  15. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521. https://doi.org/10.1002/tea.10034
  16. Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage. London.
  17. National Research Council. (2012). A Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press. Washington, DC.
  18. Pacey, A. (1983). The culture of technology: MIT Press. Cambridge.
  19. Roberts, D.A., & Bybee, R.W. (2014). Scientific literacy, science literacy, and science education. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education, Volume II (pp. 545-558). New York, NY: Routledge.
  20. Roth, W.-M., & Lee, S. (2004) Science education as/for participation in the community. Science Education, 88(2), 263-294. https://doi.org/10.1002/sce.10113
  21. Sadler, T., Barab, S., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371-391. https://doi.org/10.1007/s11165-006-9030-9
  22. Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26(4), 387-409. https://doi.org/10.1080/0950069032000119456
  23. Volti, R. (2013). Society and Technological Change: Worth Publishers. New York, NY.
  24. Waight, N. (2013). Technology knowledge: High school science teachers' conceptions of the nature of technology. International Journal of Science and Mathematics Education. 11(5), 1-26. https://doi.org/10.1007/s10763-012-9388-2
  25. Waight, N., & Abd-El-Khalick, F. (2012). Nature of technology: Implications for design, development, and enactment of technological tools in school science classrooms. International Journal of Science Education, 34(18), 2875-2905. https://doi.org/10.1080/09500693.2012.698763
  26. Walker, K. A., & Zeidler, D. L. (2007). Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29(11), 1387-1410. https://doi.org/10.1080/09500690601068095
  27. Zeidler, D. L. (2003). The role of moral reasoning on socioscientific issues and discourse in science education. Kluwer Academic Publishers. Netherlands.
  28. Zeidler, D.L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research and practice. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education, Volume II (pp. 697-726). Routledge. New York, NY.
  29. Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49-58. https://doi.org/10.1007/BF03173684
  30. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357-377. https://doi.org/10.1002/sce.20048
  31. Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 86(3), 343-367. https://doi.org/10.1002/sce.10025

피인용 문헌

  1. 대학생들의 과학기술관련 사회쟁점(SSI) 논의에서 기술의 본성(NOT)은 어떻게 나타나는가? vol.36, pp.2, 2015, https://doi.org/10.14697/jkase.2016.36.2.0303
  2. 디지털스토리텔링 활동 기반 과학관련 사회쟁점 수업의 교육적 효과에 대한 인식 탐색 vol.37, pp.1, 2017, https://doi.org/10.14697/jkase.2017.37.1.0181
  3. 과학기술관련 사회쟁점에 대한 의사결정에서 나타나는 NOT 이해 수준의 평가를 위한 루브릭 개발 및 적용 vol.37, pp.2, 2015, https://doi.org/10.14697/jkase.2017.37.2.0323