DOI QR코드

DOI QR Code

표준정수처리공정에서 분말활성탄과 중간염소를 이용한 지오스민 저감방안

Removal of Geosmin by Combined Treatment of PAC and Intermediate Chlorination in the Conventional WTP

  • 김태균 (서울시상수도사업본부 암사아리수정수센터) ;
  • 최재호 (서울시상수도사업본부 암사아리수정수센터)
  • Kim, Tae Kyun (The office of Waterworks, Seoul Metropolitan Government Amsa Arisu Water Purification Center) ;
  • Choi, Jae Ho (The office of Waterworks, Seoul Metropolitan Government Amsa Arisu Water Purification Center)
  • 투고 : 2014.08.07
  • 심사 : 2014.11.28
  • 발행 : 2015.01.31

초록

본 연구에서는 맛 냄새 물질 발생시 표준정수처리공정에서 지오스민과 활성탄 주입량을 효과적으로 저감하는 방안을 제시하였다. 염소처리방식에 따른 지오스민 제거효율을 평가한 결과, 저농도(< 25 ng/L)의 경우 전염소와 중간염소를 동시에 운영할 경우 지오스민 제거율은 46%인 반면, 중간염소로 운영한 공정의 지오스민 제거율은 57%로 나타났다. 중농도(25~79 ng/L)에서는 전염소와 중간염소로 운영한 지오스민 제거율은 59%, 중간염소로 운영한 지오스민 제거율은 87%로 나타났다. 고농도(> 80 ng/L)에서도 전염소와 중간염소를 동시에 운영한 지오스민 제거율은 67%인 반면 중간염소로 운영한 지오스민 제거율은 95%로 나타나 중간염소로 운영시 제거율이 높아지는 것으로 나타났다. 지오스민 농도별 측정결과와 활성탄 투입량의 상관성을 분석한 결과, 결정계수($R^2$)는 0.96 으로 나타나 적합한 분말활성탄 조견표를 제안하였다. 또한, 지오스민 물질발생 초기에 중간염소와 활성탄을 동시에 투입 시 원수농도가 급격히 증가하여도 지오스민의 입자성 물질을 지속적으로 제거할 수 있어 활성탄 저감 뿐만 아니라 정수 기대농도도 만족할 수 있었다.

In this study, the effective treatment reducing geosmin and dosage of PAC was suggested when taste & odor compounds flow in. The removal efficiency of geosmin was evaluated with types of chlorination. In case of low geosmin concentration below 25 ng/L, removal efficiency of geosmin was estimated at 46% by combined treatment of pre and intermediate-chlorination. But, in the exclusive intermediate-chlorination treatment, removal efficiency of geosmin was increased to 57%. In the medium geosmin concentration (25~79 ng/L), removal efficiency of geosmin was estimated at 59% by combined treatment. But, in the exclusive intermediate-chlorination treatment, removal efficiency of geosmin was increased to 87%. When high geosmin concentration above 80 ng/L flows in, removal efficiency of geosmin was estimated at 69% by combined treatment. However, in the exclusive intermediate-chlorination treatment, removal efficiency of geosmin was increased to 95%. Then, the exclusive intermediate-chlorination has an important effect on removal of geosmin. After correlation of geosmin concentration and dosage of PAC was analyzed, the coefficient of determination was estimated at 0.96. And, the proper PAC dosage chart was proposed. Also, at a initial occurrence of geosmin, when the combined treatment by intermediate-chlorination and PAC was applied, particle-bound geosmin should be removed continuously. Finally, it is proved that the combined treatment was effective to remove the geosmin by threshold levels as well as to reduce the dosage of PAC.

키워드

참고문헌

  1. Guideline of healthy & tasty water, seoul metropolitan government(2010).
  2. Young, W. F., Horth, H., Crane, R., Ogden, T. and Arnott, M., "Taste and odour threshold concentrations of potential potable water contaminants," Water Res., 30(2), 331-340(1996). https://doi.org/10.1016/0043-1354(95)00173-5
  3. Pirbazari, M., Ravindran, V., Badriyha, B. N., Craig, S. and McGuire, M. J., "GAC adsorber design protocol for the removal of off-flavors," Water Res., 27(7), 1153-1166(1993). https://doi.org/10.1016/0043-1354(93)90007-5
  4. Lloyd, S. W., Lea, J. M., Zimba, P. V. and Grimm, C. C., "Rapid analysis of geosmin and 2-methylisoborneol in water using solid phase micro extraction procedure," Water Res., 32(7), 2140-2146(1998). https://doi.org/10.1016/S0043-1354(97)00444-2
  5. David, C., Gayle, N. and Pascale, S., "The application of powdered activated carbon for MIB and Geosmin removal : Predicting PAC doses in four raw waters," Water Res., 35 (5), 1325-1333(2001). https://doi.org/10.1016/S0043-1354(00)00363-8
  6. Ferguson, D. W., McGuire, M. J., Koch, B., Wolfe, R. L. and Aieta, E., "Comparing peroxone and ozone for controlling taste and odor compound, disinfection by-products, and microorganisms," J. Am. Water Works Assoc., 82, 181-191 (1990).
  7. Glaze, W. H., Zarnoch, J. J., Ruth, E. C., Chauncey, W. and Schep, R., "Evaluating oxidants for the removal of model taste and odor compounds from a municipal water supply," J. Am. Water Works Assoc., 82, 79-84(1990).
  8. Bruce, D., Westerhoff, P. and Brawley, C. A., "Removal of 2-methylisoborneol and geosmin in surface water treatment plants in Arizona," J. Water Supply, 51, 183-197(2002).
  9. Standard of facilities for waterworks, MOE(2010).
  10. Testing standard for water quality pollution process, MOE (2012).
  11. Martine, Van der P., and Claude, E. B., "Geosmin production by cyanobacteria (blue-green algae) in fish ponds at auburn, alabama," J. World Aquaculture Soc., 22(4), 207-216(2007). https://doi.org/10.1111/j.1749-7345.1991.tb00736.x
  12. Durrer, M., Zimmermann, U. and Jettner, F., "Dissolved and particle-bound geosmin in a mesotrophic lake (Lake zuerich) : Spatial and seasonal distribution and the effect of grazers," Water Res., 33(17), 3628-3636(1999). https://doi.org/10.1016/S0043-1354(99)00069-X