DOI QR코드

DOI QR Code

PSPICE analysis of the Lorenz circuit using the MOS resistor

MOS 가변저항을 이용한 로렌츠 회로의 PSPICE 해석

  • Ji, Sung-Hyun (Department of Nano Engineering, Inje University) ;
  • Kim, Boo-Kang (Department of Nanoscience and Engineering, Inje University) ;
  • Nam, Sang-Guk (Department of Nanoscience and Engineering, Inje University) ;
  • Nguyen, Van Ha (Department of Nanoscience and Engineering, Inje University) ;
  • Park, Yong Su (Department of Faculty Electrical Electronic Engineering, Chung Cheong University) ;
  • Song, Han Jung (Department of Nano Engineering, Inje University)
  • Received : 2014.06.19
  • Accepted : 2015.02.12
  • Published : 2015.02.28

Abstract

In this paper, chaotic circuit of the voltage controlled Lorentz system for engineering applications has been designed and implemented in an electronic circuit. The proposed circuit consists of MOS variable resistor, multipliers, capacitors, fixed resistors and operational amplifiers. The circuit was analysed by PSPICE program. PSPICE simulation results show that chaotic dynamics of the circuit can be controlled by the MOS variable resistor through time series analysis, frequency analysis and phase diagrams. Also, we implemented the proposed circuit in an electronic hardware system with discrete elements. Measured results of the circuit showed controllability of the circuit using the MOS resistor.

논문에서는 공학적 응용을 위한 로렌츠 카오스 회로를 연산증폭기, 곱셈기 및 MOS 가변저항 등을 이용하여 전자회로로 구현하였다. PSPICE 모의실험을 통하여, MOS 저항의 전압 변화에 따라, 로렌츠 회로가 주기상태, 카오스 상태로 변하는 것을 시간파형, 주파수 특성 및 위상특성 등을 통하여 보였다. 제안하는 회로를, 하드웨어로 구현하여 MOS 저항의 전압변화에 따라 로렌츠 회로의 카오스 다이내믹스가 제어됨을 확인하였다.

Keywords

References

  1. T. S. Parker and L. O. Chua, "Chaos: A Tutorial for Enginees" Proc. IEEE vol. 75, no. 8, pp. 982-1008. 1987. DOI: http://dx.doi.org/10.1109/PROC.1987.13845
  2. H. S. Son and H. J. Song, "Active Filter-based Tunable Chua's Circuit with Voltage Controllability", vol. 64 pp. 1040-1046, 2014. https://doi.org/10.3938/jkps.64.1040
  3. Fransis C. Moon, Chaotic Vibrations : An Introduction for Applied Scientists and Engineers, John Wiley & SONS, 1992.
  4. R. Tokunaga, M. Komuro, T. Matsumoto, and L. O. Chua, "'Lorenz attractor from an electrical circuit with uncoupled continuous piecewise linear resistor," Int. J. Circ. Theory Appl. 17(1), 71-85 (1989). DOI: http://dx.doi.org/10.1002/cta.4490170108
  5. G. O. Zhong and F. Ayrom, "Experimental confirmation of chaos from Chua's circuit", Int. J. Circuit Theory and Applications, vol. 13, no. 1, pp. 93-98, 1985. DOI: http://dx.doi.org/10.1002/cta.4490130109
  6. L. Kocarev, K. S. Halle, K. Eckert and L. O. Chua, "Experimental Demonstration of Secure Communication via Chaotic Synchronization" Int.J. Bifurcation and Chaos, vol. 2, no. 3, pp. 709-713, 1992. DOI: http://dx.doi.org/10.1142/S0218127492000823
  7. Jonathan N. Blakely, Michael B. Eskridge, and Ned J. Corron, "High-frequency chaotic Lorenz circuit," Proc. IEEE Southeast Con 2008, 69-74 (2008). DOI: http://dx.doi.org/10.1109/SECON.2008.4494258
  8. K. M. Cuomo and A. V. Oppenheim, "Synchronization of Lorenz-based chaotic circuits with applications to communications", IEEE Trans. Circuits Syst. II 40(10), 626-633 (1993). DOI: http://dx.doi.org/10.1109/82.246163
  9. I. Pehlivan and Y. Uyaroglu, "Simplified chaotic diffusionless Lorentz attractor and its application to secure communication systems", IEEE Commun. Vol. 1, NO. 5. October 2007 DOI: http://dx.doi.org/10.1049/iet-com:20070131
  10. Jonathan N. Blakely, Michael B. Eskridge, and Ned J. Corron. "A simple Lorenz circuit and its radio frequency implementation", Chaos 17(2), 023112(2007). DOI: http://dx.doi.org/10.1063/1.2723641