
JPNT 4(1), 1-7 (2015)
http://dx.doi.org/10.11003/JPNT.2015.4.1.001

Copyright © The Korean GNSS Society

JPNT Journal of Positioning,
Navigation, and Timing

http://www.gnss.or.kr   Print ISSN: 2288-8187   Online ISSN: 2289-0866

1. INTRODUCTION

Based on the successful application cases of a military 

unmanned aerial vehicle (UAV), developed countries have 

introduced the application of UAV into the public sector, 

and it has also been used in the civilian sector in various 

forms. UAV has thus far been used in limited fields such as 

crop situation survey, smuggling surveillance, broadcasting 

and communication repeater,  and meteorological 

observation. However, the possibility and range of the 

commercial use of UAV have rapidly expanded as shown 

by the fact that foreign popular enterprises (e.g., Amazon 

and Google) recently announced plans to actively use UAV 

for product shipping (CBS News 2013, New York Times 

2014). As the operation of commercial UAV has gradually 

increased and the missions have gradually been automated, 
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ABSTRACT

In the case of an unmanned aerial vehicle (UAV) equipped with a GNSS sensor, a boundary line where the vehicle can actually 
exist can be calculated using a navigation error model, and safe navigation (e.g., precise landing and collision prevention) 
can be supported based on this boundary line. Therefore, for the safe operation of UAV, a model for the position error of UAV 
needs to be established in advance. In this study, the multipath error of a GNSS sensor installed at UAV was modeled through 
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error value was well bound by the error model of an existing manned aircraft. This result indicates that the error model of an 
existing manned aircraft can be used in operation environments similar to the scenario for the flight test. Also, in this study, 
a scenario for the operation of multiple UAVs was considered, and the correlation between the multipath errors of the UAVs 
was analyzed. The result of the analysis showed that the correlation between the multipath errors of the UAVs was not large, 
indicating that the multipath errors of the UAVs cannot be canceled out.
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accurate and safe navigation of UAV for successful mission 

performance and safe return is more important than ever.

A navigation sensor that is commonly used for aircraft is 

a Global Navigation Satellite System (GNSS) sensor. It has 

a lot of advantages such as global position estimation and 

curved approach, and thus has replaced the ground-based 

navigation systems of an existing manned aircraft such as 

Instrument Landing System (ILS) and Microwave Landing 

System (MLS). A GNSS sensor receives signals transmitted 

from satellites that are far away from the Earth, and thus 

has a number of errors. Therefore, for an existing manned 

aircraft, a boundary line where the vehicle can actually exist 

at a high probability (1-10-7~1-10-9) is defined by establishing 

an error model of GNSS, and safe navigation is supported 

based on this (RTCA SC-159 2004). In the operation of UAV 

for civilian purposes, use of a GNSS sensor is also expected. 

Accordingly, the safety of navigation information should be 

guaranteed by examining UAV-specific GNSS sensor errors 

and by establishing an error model that is appropriate for 

the characteristics of the corresponding elements, similar to 

an existing manned aircraft. If the position error of UAV is 

accurately modeled, a boundary line where the vehicle can 
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actually exist can be defined based on the modeled error, 

and precise and safe navigation (e.g., precise takeoff and 

landing and the prevention of collision between UAVs) can 

be performed based on this.

The GNSS error of  UAV consists  of  the residual 

tropospheric delay error (

an existing manned aircraft, a boundary line where the vehicle can actually exist at a high probability 
( ~ ) is defined by establishing an error model of GNSS, and safe navigation is 
supported based on this (RTCA SC-159 2004).In the operation of UAV for civilian purposes, use of a 
GNSS sensor is also expected.Accordingly, the safetyof navigation information should be guaranteed by 
examining UAV-specific GNSS sensor errors and by establishing an error model that is appropriate for 
the characteristics of the corresponding elements, similar to an existing manned aircraft.If the position 
error of UAV is accurately modeled, a boundary line where the vehicle can actually exist can be defined 
based on the modeled error, and precise and safe navigation (e.g., precise takeoff and landing and the 
prevention of collision between UAVs) can be performed based on this. 

The GNSS error of UAV consists of the residual tropospheric delay error ( tropoσ ), the residual 
ionospheric delay error ( ionoσ ), andthe error from the receiver installed at the aircraft( airσ )(Misra&Enge, 
2001).In this regard, airσ  can be divided into the receiver noise error of the vehicle ( noiseσ ) and the 
multipath error ( multipathσ ).For the tropospheric delay error and the ionospheric delay error, errors are 
introduced to manned and unmanned aerial vehicles through the same process regardless of the types of 
the vehicles.Therefore, for these error elements, the error of UAV can be estimated using the error model 
for an existing manned aircraft.Also, the receiver noise error constituting airσ  changes depending on the 
type of the receiver, and an existing established receiver error model can be used depending on the type of 
the receiver installed at manned and unmanned aerial vehicles.However, the multipath error occurs due to 
the reflection or scattering of GNSS signals by obstacles, and is affected by the local environmental 
factors of the surrounding area.Although an antenna and a receiver with the same performance are used, it 
is difficult to utilize the multipath error model of an existing mannedaircraft as it stands, because UAV 
has a body shape that is different from that of a mannedaircraft and is operated at a lower 
altitude.Therefore, a multipath error model that is appropriate for the operation characteristics of UAV 
needs to be re-established.For this purpose, in this study, the multipath error of UAV ( multipathσ ) was 
estimated and modeled by collecting GNSS signals through a UAV flight test, and this was verified 
through comparison with the error model of an existing mannedaircraft.In Section 2 of this paper, an 
algorithm for estimating a multipath error using the GNSS data collected through an experiment was 
explained; and in Section 3, the test site for the flight test and the flight platform were explained in 
detail.In Section 4, a UAV multipath error model based on the flight test was suggested, and the 
correlation between the multipath errors of UAVs was analyzed. 
 
2.METHODOLOGYFOR AIRBORNE MULTIPATH MODELING 
 

A multipath error occurs due to the reflection or scattering of GNSS signals by obstacles, and thus is 
basically affected by the shape of a body.The effect of the reflected signals is determined by antenna gain 
and the correlator duration of a receiver.Also, the multipath error of code measurement decreases during a 
code-carrier smoothing filter process, and thus the time constant of the filter has a large effect on the 
multipath error.UAV has a body shape that is different from that of a mannedaircraft, and thus signals 
reflected by the bodies are different.Depending on the assigned mission, UAV can be operated at a lower 
altitude than a mannedaircraft, and thus signals reflected from the ground surface or buildings on the 
ground could be received.Therefore, although an antenna and a receiver that are identical to those of a 
mannedaircraft are used, the multipath error of UAV should be modeled based on experiment data.This 
study aimed to model a multipath error due to the body shape of UAV and the flight environment, rather 
than receiver and antenna characteristics.For this purpose, dual-frequency GNSS data were collected 
through a UAV flight test, and a multipath error was estimated based on this.Fig. 1 shows the data 
analysis process for the estimation of a multipath error. 

Based on the dual-frequency GPS data collected by UAV, Code Minus Carrier (CMC) estimates can 
be calculated using the code measurement and carrier measurement of the L1 frequency ( 1 1,L Lρ φ ) as 
shown in Eq. (1). 
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Fig. 1.  Data analysis process of airborn multipath estimation.
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an existing manned aircraft, a boundary line where the vehicle can actually exist at a high probability 
( ~ ) is defined by establishing an error model of GNSS, and safe navigation is 
supported based on this (RTCA SC-159 2004).In the operation of UAV for civilian purposes, use of a 
GNSS sensor is also expected.Accordingly, the safetyof navigation information should be guaranteed by 
examining UAV-specific GNSS sensor errors and by establishing an error model that is appropriate for 
the characteristics of the corresponding elements, similar to an existing manned aircraft.If the position 
error of UAV is accurately modeled, a boundary line where the vehicle can actually exist can be defined 
based on the modeled error, and precise and safe navigation (e.g., precise takeoff and landing and the 
prevention of collision between UAVs) can be performed based on this. 

The GNSS error of UAV consists of the residual tropospheric delay error ( tropoσ ), the residual 
ionospheric delay error ( ionoσ ), andthe error from the receiver installed at the aircraft( airσ )(Misra&Enge, 
2001).In this regard, airσ  can be divided into the receiver noise error of the vehicle ( noiseσ ) and the 
multipath error ( multipathσ ).For the tropospheric delay error and the ionospheric delay error, errors are 
introduced to manned and unmanned aerial vehicles through the same process regardless of the types of 
the vehicles.Therefore, for these error elements, the error of UAV can be estimated using the error model 
for an existing manned aircraft.Also, the receiver noise error constituting airσ  changes depending on the 
type of the receiver, and an existing established receiver error model can be used depending on the type of 
the receiver installed at manned and unmanned aerial vehicles.However, the multipath error occurs due to 
the reflection or scattering of GNSS signals by obstacles, and is affected by the local environmental 
factors of the surrounding area.Although an antenna and a receiver with the same performance are used, it 
is difficult to utilize the multipath error model of an existing mannedaircraft as it stands, because UAV 
has a body shape that is different from that of a mannedaircraft and is operated at a lower 
altitude.Therefore, a multipath error model that is appropriate for the operation characteristics of UAV 
needs to be re-established.For this purpose, in this study, the multipath error of UAV ( multipathσ ) was 
estimated and modeled by collecting GNSS signals through a UAV flight test, and this was verified 
through comparison with the error model of an existing mannedaircraft.In Section 2 of this paper, an 
algorithm for estimating a multipath error using the GNSS data collected through an experiment was 
explained; and in Section 3, the test site for the flight test and the flight platform were explained in 
detail.In Section 4, a UAV multipath error model based on the flight test was suggested, and the 
correlation between the multipath errors of UAVs was analyzed. 
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A multipath error occurs due to the reflection or scattering of GNSS signals by obstacles, and thus is 
basically affected by the shape of a body.The effect of the reflected signals is determined by antenna gain 
and the correlator duration of a receiver.Also, the multipath error of code measurement decreases during a 
code-carrier smoothing filter process, and thus the time constant of the filter has a large effect on the 
multipath error.UAV has a body shape that is different from that of a mannedaircraft, and thus signals 
reflected by the bodies are different.Depending on the assigned mission, UAV can be operated at a lower 
altitude than a mannedaircraft, and thus signals reflected from the ground surface or buildings on the 
ground could be received.Therefore, although an antenna and a receiver that are identical to those of a 
mannedaircraft are used, the multipath error of UAV should be modeled based on experiment data.This 
study aimed to model a multipath error due to the body shape of UAV and the flight environment, rather 
than receiver and antenna characteristics.For this purpose, dual-frequency GNSS data were collected 
through a UAV flight test, and a multipath error was estimated based on this.Fig. 1 shows the data 
analysis process for the estimation of a multipath error. 

Based on the dual-frequency GPS data collected by UAV, Code Minus Carrier (CMC) estimates can 
be calculated using the code measurement and carrier measurement of the L1 frequency ( 1 1,L Lρ φ ) as 
shown in Eq. (1). 
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L LN Nλ λ
γ
−
−

 which includes 

integer ambiguity does not change, and thus this term can be expressed as a bias. 
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When the value I in Eq. (3) is substituted into Eq. (2), the sum of the multipath error and receiver 

noise of code measurement can be calculated as shown in Eq. (4).The bias in Eq. (4) can be eliminated by 
subtracting the average value of measurement from the measurement calculated using Eq. (4). 
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The standard deviation of the measurement calculated by Eq. (4) (����) represents the standard 

deviation value of the sum of multipath error and receiver noise.In this study, only the multipath error 
term was estimated by eliminating receiver noise through ‘inverse Root Sum Square’ as shown in Eq. (5), 
assuming that multipath error and receiver noise are independent. 

 
2 2

mp CMC noiseσ σ σ= −                                           (5) 
 

The standard deviation of receiver noise was calculated using the theoretical model shown in Eq. (6), 
and this was removed from the CMC estimation value (McGraw et al. 2000). 
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where�� is the wavelength of the code chip (in meters), � is the correlate spacing, ���� is the carrier to 
noise value in units of ratio-Hz, and τ is the smoothing time constant. 

 
3.FLIGHT TEST CONFIGURATION 
 

 is the smoothing time constant.

3. FLIGHT TEST CONFIGURATION

Fig. 2 shows the UAV flight test site for the collection 

of multipath errors. For UAV that is to be operated in the 

civilian sector in the future, it would be inevitable that UAV 

is affected by buildings and trees that could block GNSS 

signals or could induce multipath errors. Thus, the flight 

test site was selected to be an empty lot on the western side 

of the Industrial Engineering and Management Building 

in KAIST considering the environment for future UAV 

operation. As shown in the figure, buildings were located 

and many trees were distributed around the test site. For 

this reason, it was thought to be an appropriate site for 

collecting the multipath error of UAV that is to be operated 

in the civilian sector, and the flight test was performed 

based on a flight at a 40 m altitude.

Figs. 3 and 4 show the flight platform for performing 

the flight test. An octocopter with a 110 cm diameter 

and a 35 cm height was used, and high-performance 

NovAtel FlexPak-6 receiver and NovAtel ANT-A72GOLA-

TW antenna were used to collect dual-frequency GPS 

data. Also, a data logger and an APM 2.6 controller using 

the PID feedback control technique were installed. This 

octocopter performs flight using the navigation solution of 

the FlexPak-6 receiver, and records the GNSS data of the 

FlexPak-6 receiver in the data logger at the same time.

Fig. 2.  UAV flight test site at KAIST.

Fig. 3.  Multi-copter UAV platform for flight test.
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4. RESULTS

4.1 Multipath Error Model of UAV 

The UAV flight test for the collection of multipath errors 

was conducted based on a scenario in which the UAV 

performs hovering at an altitude of 40 m, and a total of 49 

test flights were carried out. In each flight test, the UAV 

performed hovering on a spot of the site shown in Fig. 2 at 

a constant height. The location changed in each test within 

the boundary shown in Fig. 2 (about a 30 m radius), but 

the altitude was maintained at 40 m. This corresponded 

to a flight time of a total of 4 hours and 3 minutes. Dual-

frequency GNSS data were collected through the NovAtel 

receiver using the 0.1 chip C/A code correlator installed at 

the UAV, and the multipath error was calculated based on 

the algorithm explained in Section 3. The UAV flight test 

was performed at an altitude that is much lower than the 

flight altitude of a manned aircraft. As a result, it would 

include a lot of effects of signals reflected from the ground 

as well as signals reflected from the body. The multipath 

error was calculated for each satellite observed during 

about 4 hours of flight test. Therefore, a maximum of 4-hour 

data could be obtained for each satellite, and the total sum 

of the multipath error data of all the observed satellites 

corresponded to 28 hours. Fig. 5 shows the multipath errors 

observed during the flight test depending on the elevation 

angle of the satellite. In Fig. 5, the x-axis represents the 

elevation angle of the satellite, y-axis represents the 

multipath error value, and the color bar on the right side 

represents the number of data for each 0.5deg*0.02m pixel. 

As shown in the graph, the multipath error value increased 

as the elevation angle decreased. This is the typical 

characteristic of a multipath error, and it is because signals 

are scattered or reflected by buildings, etc. as the elevation 

angle of the satellite decreases. The maximum multipath 

error (about 1.7 m) was observed at a satellite elevation 

angle of 6 degrees, and the multipath error decreased 

when the elevation angle was lower than 6 degrees. This is 

because when the elevation angle was lower than 6 degrees, 

the number of data was insufficient, and thus accurate 

characteristic of the multipath error could not be reflected.

The blue curved line in Fig. 6 shows the standard 

deviation value of the multipath error collected through 

the flight test, and this was calculated based on the bin size 

of the satellite elevation angle of 2 degrees. The red curved 

line in the graph shows the result of the Airframe Multipath 

Designator (AMD)-A standard airborne multipath model 

for manned aircraft suggested by RTCA (2004). This model 

was established using the actual flight data of a number 

of manned aircraft equipped with a receiver based on 

100-second smoothing (Booth et al. 2000). This model can 

be expressed as a function of the elevation angle of the 

satellite (el) as shown in the following equation.
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The blue curved line in Fig. 6 shows the standard deviation value of the multipath error collected 
through the flight test, and this was calculated based on the bin size of the satellite elevation angle of 2 
degrees.The red curved line in the graph shows the result of the Airframe Multipath Designator (AMD)-A 
standard airborne multipath modelfor manned aircraft suggested by RTCA (2004).This model was 
established using the actual flight data of a number of manned aircraft equipped with a receiver based on 
100-second smoothing (Booth et al. 2000).This model can be expressed as a function of the elevation 
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( /10 )

. ( ) 0.13 0.53 el
Std multipath el eσ −= +                                      (7) � (7)

The existing model is a multipath error model established 

using the data collected during flight without an obstacle 

(e.g., a nearby building). In the flight test of this study, the 

flight vehicle was higher than nearby buildings, and thus 

the multipath reflected from the aircraft body and the 

ground would have a larger effect than the multipath error 

due to the nearby buildings. As shown in the graph, the 

multipath error of the UAV obtained through the flight test 

was well bound by the standard airborne multipath model. 

This indicates that the existing model could be used to 

estimate multipath error values in the flight environment 

of the flight test (i.e., when UAV equipped with the 0.1 chip 

C/A code correlator and the receiver using 100-second 

smoothing performs hovering at an altitude higher than 

Fig. 4.  GNSS data collection module and UAV control module for flight 
test.

Fig. 5.  UAV multipath colleted from UAV flight test.
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nearby buildings on a site with a flat ground surface as in 

an airport). However, if there is direct effect of buildings as 

the nearby area is surrounded by the buildings, the existing 

model, which had been established in an environment 

without an obstacle, could not be used. The UAV used in 

the test is a flight vehicle that can be used for commercial 

purposes (e.g., unmanned parcel service), and it was 

analyzed only for a specific operation scenario. UAVs 

for commercial purposes have various sizes and types 

(e.g., fixed wing and rotor). Also, the antenna position, 

flight altitude, maneuver, and surrounding environment 

would have a large effect on the multipath error of UAV. 

Therefore, for the operation of UAV in the civilian sector, 

a multipath error model needs to be established for each 

operation scenario that is appropriate for an operation 

purpose. In the future, for the commercial operation of 

UAV (e.g., unmanned parcel service), a multipath error for 

each operation scenario will be established based on the 

octocopter by diversifying the flight altitude, surrounding 

environment, maneuver, etc.

4.2 Analysis of the Correlation Between the Multipath 
Errors of UAVs

When performing missions such as reconnaissance and 

surveillance, the mission can be more effectively performed 

if multiple UAVs in formation are used rather than a single 

UAV. During the simultaneous operation of multiple UAVs, 

an essential consideration is the prevention of collision 

between UAVs. As mentioned earlier, the safety of UAV can 

be increased by modeling the error of a GNSS sensor. In the 

earlier section, a multipath error among the GNSS sensor 

errors of a single UAV was analyzed, and the relevant error 

model was suggested. If a boundary line where a vehicle can 

actually exist is defined using this model, multiple UAVs can 

be operated so that the boundary line of each UAV is not 

intruded, thereby preventing a collision.

If the errors of UAVs in operation have similar directions 

and sizes, boundary lines can be defined by ignoring the 

correlated errors in terms of relative distance. When the 

width of the boundary line between UAVs narrows, the 

operation range of each UAV widens, and thus the efficiency 

of mission performance would increase. Therefore, a 

correlation analysis of the GNSS sensor error factor should 

be carried out to increase the operation efficiency of 

multiple UAVs. In this study, the analysis of the correlation 

between the multipath errors of two UAVs was performed. 

Two octocopters with the specification identical to the 

flight platform configuration for the UAV multipath error 

collection described earlier were made to hover at the 

same altitude (20 m from the ground), and the multipath 

errors were collected at the same time. In this regard, the 

horizontal distance between the two UAVs was maintained 

at 10 m. A total of 10 test flights were carried out, and this 

corresponded to a flight time of a total of 20 minutes. Fig. 

7 shows the multipath errors of the PRN 05 and PRN 15 

satellites collected by the two UAVs. The graph shows the 

result of one flight among the 10 flight tests. The x-axis 

represents the data collection period during the flight test, 

and the y-axis represents the multipath error. The average 

Pearson correlation coefficient between the multipath 

errors of all the satellites collected by the two UAVs was 

-0.12, indicating that there was almost no correlation 

between the two multipath errors.

UAV has a limited flight time, and it is difficult to collect 

long-term multipath errors using UAV. Therefore, to analyze 

the correlation between the multipath errors collected over 

a long period, multipath errors were collected by installing 

two antennas at the rooftop of the Mechanical Engineering 

Building in the campus of KAIST. The two installed 

 
Fig. 6. Standard deviation of observed UAV multipath compared with standarad model. 
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antennas were 16 m away from each other. Fig. 8 shows the 

multipath errors of the PRN 05 satellite collected by the two 

antennas. The blue and red lines in the graph represent the 

multipath errors of each antenna. The elevation angles of 

the PRN 05 satellite observed at the two antennas changed 

similarly, and thus the sizes of the two errors depending 

on time also changed similarly. At both ends of the graph, 

the elevation angle was low and thus the multipath error 

was large; and at the center part, the elevation angle was 

relatively high (66°) and thus the multipath error was small. 

However, the Pearson correlation coefficient between 

the two errors was 0.21, indicating that there was almost 

no correlation. In other words, the maximum sizes of the 

two multipath errors depending on the elevation angle 

were similar, but the errors did not occur at the same 

time in the same size. The average Pearson correlation 

coefficient between the multipath errors of all the satellites 

collected in the test was 0.16, indicating that there was 

almost no correlation between the multipath errors of the 

two antennas for all the satellites. This result suggests that 

the errors between the two antennas cannot be canceled 

out because the instantaneous multipath errors had no 

correlation even though the distance between the antennas 

was close (a few tens of meters).

5. CONCLUSIONS

In this study, the multipath error of GNSS signals in a 

UAV operation environment where a GNSS sensor is used 

as the navigation sensor was modeled through the flight test 

of UAV. UAV has a body shape that is different from that of 

a manned aircraft and can be operated at a relatively lower 

altitude depending on the mission. Therefore, an error 

model that is appropriate for the operation characteristics 

of UAV needs to be established. An accurate error model 

is essential for calculating a boundary line where a vehicle 

can actually exist, and this would enable the safe navigation 

of UAV. In this study, to collect the multipath error of 

UAV, a flight test was carried out based on a scenario in 

which UAV performs hovering at an altitude of 40 m. The 

results of the test indicated that the multipath error of 

the UAV increased as the elevation angle of the satellite 

decreased, and the value did not exceed the error model of 

an existing manned aircraft. This indicates that the AMD-A 

standard airborne multipath model for manned aircraft 

could be used to estimate the multipath error of UAV in an 

operation environment similar to the test scenario where 

UAV performs hovering at an altitude higher than nearby 

buildings on a site with a flat ground surface as in an airport 

using a 0.1 chip C/A code correlator and a receiver based on 

100-second smoothing. However, this result is not applied 
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to every case of UAV operation. If there is direct effect of 

buildings as the nearby area is surrounded by the buildings, 

the existing established model could not be used. Therefore, 

in the future, a multipath error analysis will be performed 

considering various flight platforms, flight environments and 

altitudes for UAV operation. Also, in this study, a scenario 

for the operation of multiple UAVs was considered, and the 

correlation between the multipath errors of the UAVs was 

analyzed. The results of the analysis indicated that the errors 

between the UAVs cannot be canceled out because the 

multipath errors had almost no correlation even though the 

distance between the UAVs was close (a few tens of meters).

With the expansion of the UAV application field, the type, 

flight altitude, and operation environment of UAV have been 

diversified. Therefore, for the operation of UAV in the civilian 

sector, a navigation error model that is appropriate for each 

operation scenario needs to be established. In this study, 

only the multipath error of a specific operation scenario was 

modeled; but in the future, the multipath errors of various 

UAV operation scenarios will be modeled based on the result 

of the flight test performed in this study. The error model of 

UAV established in this study could be used to calculate a 

boundary line where a vehicle can actually exist, and thus 

would be applied to various systems that utilize this safe 

distance such as precise navigation, automatic landing, and 

maintaining a separation distance between UAVs.
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