DOI QR코드

DOI QR Code

Isolation and Genomic Characterization of the T4-Like Bacteriophage PM2 Infecting Pectobacterium carotovorum subsp. carotovorum

  • Lim, Jeong-A (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Dong Hwan (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Heu, Sunggi (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration)
  • Received : 2014.09.29
  • Accepted : 2014.11.05
  • Published : 2015.03.01

Abstract

In order to control Pectobacterium carotovorum subsp. carotovorum, a novel virulent bacteriophage PM2 was isolated. Bacteriophage PM2 can infect 48% of P. carotovorum subsp. carotovorum and 78% of P. carotovorum subsp. brasilliensis but none of atrosepticum, betavasculorum, odoriferum and wasabiae isolates had been infected with PM2. PM2 phage belongs to the family Myoviridae, and contains a large head and contractile tail. It has a 170,286 base pair genome that encodes 291 open reading frames (ORFs) and 12 tRNAs. Most ORFs in bacteriophage PM2 share a high level of homology with T4-like phages including IME08, RB69, and JS98. Phylogenetic analysis based on the amino acid sequence of terminase large subunits confirmed that PM2 is classified as a T4-like phage. It contains no integrase- or no repressor-coding genes related to the lysogenic cycle, and lifestyle prediction using PHACT software suggested that PM2 is a virulent bacteriophage.

Keywords

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Besemer, J., Lomsadze, A. and Borodovsky, M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic. Acids Res. 29:2607-2618. https://doi.org/10.1093/nar/29.12.2607
  3. Casjens, S. R. and Gilcrease, E. B. 2009. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol. Biol. 502:91-111. https://doi.org/10.1007/978-1-60327-565-1_7
  4. Chibani-Chennoufi, S., Canchaya, C., Bruttin, A. and Brussow, H. 2004. Comparative genomics of the T4-Like Escherichia coli phage JS98: implications for the evolution of T4 phages. J. Bacteriol. 186:8276-8286. https://doi.org/10.1128/JB.186.24.8276-8286.2004
  5. Delcher, A. L., Bratke, K. A., Powers, E. C. and Salzberg, S. L. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673-679. https://doi.org/10.1093/bioinformatics/btm009
  6. Edgar, R., McKinstry, M., Hwang, J., Oppenheim, A. B., Fekete, R. A., Giulian, G., Merril, C., Nagashima, K. and Adhya, S. 2006. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc. Natl. Acad. Sci. U.S.A. 103:4841-4845. https://doi.org/10.1073/pnas.0601211103
  7. Farlow, J., Filippov, A. A., Sergueev, K. V., Hang, J., Kotorashvili, A. and Nikolich, M. P. 2014. Comparative whole genome analysis of six diagnostic brucellaphages. Gene 541:115-122. https://doi.org/10.1016/j.gene.2014.01.018
  8. Frampton, R. A., Pitman, A. R. and Fineran, P. C. 2012. Advances in bacteriophage-mediated control of plant pathogens. Int. J. Microbiol. 2012:326-452.
  9. Jiang, H., Jiang, X., Wang, S., Li, C., Chen, B., An, X., Mi, Z., Chen, J. and Tong, Y. 2011. The complete genome sequence of a novel T4-like bacteriophage, IME08. Arch. Virol. 156:1489-1492. https://doi.org/10.1007/s00705-011-1033-9
  10. Kim, S., Kim, M. and Ryu, S. 2014. Development of an engineered bioluminescent reporter phage for the sensitive detection of viable Salmonella typhimurium. Anal. Chem. 86:5858-5864. https://doi.org/10.1021/ac500645c
  11. Klumpp, J., Fouts, D. E. and Sozhamannan, S. 2012. Next generation sequencing technologies and the changing landscape of phage genomics. Bacteriophage 2:190-199. https://doi.org/10.4161/bact.22111
  12. Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. and Johnson, R. P. 2009. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol. 501:69-76. https://doi.org/10.1007/978-1-60327-164-6_7
  13. Kumar, S., Nei, M., Dudley, J. and Tamura, K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9:299-306. https://doi.org/10.1093/bib/bbn017
  14. Lee, D. H., Lee, J. H., Shin, H., Ji, S., Roh, E., Jung, K., Ryu, S., Choi, J. and Heu, S. 2012a. Complete genome sequence of Pectobacterium carotovorum subsp. carotovorum bacteriophage My1. J. Virol. 86:11410-11411. https://doi.org/10.1128/JVI.01987-12
  15. Lee, D. H., Lim, J. A., Lee, J., Roh, E., Jung, K., Choi, M., Oh, C., Ryu, S., Yun, J. and Heu, S. 2013. Characterization of genes required for the pathogenicity of Pectobacterium carotovorum subsp. carotovorum Pcc21 in Chinese cabbage. Microbiology 159:1487-1496. https://doi.org/10.1099/mic.0.067280-0
  16. Lee, J. H., Shin, H., Ji, S., Malhotra, S., Kumar, M., Ryu, S. and Heu, S. 2012b. Complete genome sequence of phytopathogenic Pectobacterium carotovorum subsp. carotovorum bacteriophage PP1. J. Virol. 86:8899-8900. https://doi.org/10.1128/JVI.01283-12
  17. Lim, J. A., Jee, S., Lee, D. H., Roh, E., Jung, K., Oh, C. and Heu, S. 2013. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. J. Microbiol. Biotechnol. 23:1147-1153. https://doi.org/10.4014/jmb.1304.04001
  18. Lim, J. A., Shin, H., Lee, D. H., Han, S. W., Lee, J. H., Ryu, S. and Heu, S. 2014. Complete genome sequence of the Pectobacterium carotovorum subsp. carotovorum virulent bacteriophage PM1. Arch. Virol. 159:2185-2187: https://doi.org/10.1007/s00705-014-2005-7
  19. Loc-Carrillo, C. and Abedon, S. T. 2011. Pros and cons of phage therapy. Bacteriophage 1:111-114. https://doi.org/10.4161/bact.1.2.14590
  20. Lu, T. K. and Koeris, M. S. 2011. The next generation of bacteriophage therapy. Curr. Opin. Microbiol. 14:524-531. https://doi.org/10.1016/j.mib.2011.07.028
  21. McNair, K., Bailey, B. A. and Edwards, R. A. 2012. PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28:614-618. https://doi.org/10.1093/bioinformatics/bts014
  22. Miller, E. S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T. and Ruger, W. 2003. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 67:86-156. https://doi.org/10.1128/MMBR.67.1.86-156.2003
  23. Nolan, J. M., Petrov, V., Bertrand, C., Krisch, H. M. and Karam, J. D. 2006. Genetic diversity among five T4-like bacteriophages. Virol. J. 3:30. https://doi.org/10.1186/1743-422X-3-30
  24. Schattner, P., Brooks, A. N. and Lowe, T. M. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic. Acids Res. 33:W686-689. https://doi.org/10.1093/nar/gki366
  25. Schmelcher, M., Donovan, D. M. and Loessner, M. J. 2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 7:1147-1171. https://doi.org/10.2217/fmb.12.97
  26. Scholl, D., Adhya, S. and Merril, C. 2005. Escherichia coli K1's capsule is a barrier to bacteriophage T7. Appl. Environ. Microbiol. 71:4872-4874. https://doi.org/10.1128/AEM.71.8.4872-4874.2005
  27. Summer, E. J., Berry, J., Tran, T. A., Niu, L., Struck, D. K. and Young, R. 2007. Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts. J. Mol. Biol. 373:1098-1112. https://doi.org/10.1016/j.jmb.2007.08.045
  28. Wilcox, S. A., Toder, R. and Foster, J. W. 1996. Rapid isolation of recombinant lambda phage DNA for use in fluorescence in situ hybridization. Chromosome Res. 4:397-398. https://doi.org/10.1007/BF02257276
  29. Yuan, Y., Gao, M., Peng, Q., Wu, D., Liu, P. and Wu, Y. 2014. Genomic analysis of a phage and prophage from a Bacillus thuringiensis strain. J. Gen. Virol. 95:751-761. https://doi.org/10.1099/vir.0.058735-0
  30. Ziedaite, G., Daugelavicius, R., Bamford, J. K. and Bamford, D. H. 2005. The Holin protein of bacteriophage PRD1 forms a pore for small-molecule and endolysin translocation. J. Bacteriol. 187:5397-5405. https://doi.org/10.1128/JB.187.15.5397-5405.2005

Cited by

  1. Genomic characterization of bacteriophage vB_PcaP_PP2 infecting Pectobacterium carotovorum subsp. carotovorum, a new member of a proposed genus in the subfamily Autographivirinae vol.162, pp.8, 2017, https://doi.org/10.1007/s00705-017-3349-6
  2. Bacteriophages of Soft RotEnterobacteriaceae—a minireview vol.363, pp.2, 2016, https://doi.org/10.1093/femsle/fnv230