DOI QR코드

DOI QR Code

Receiver Function Inversion Beneath Ngauruhoe Volcano, New Zealand, using the Genetic Algorithm

유전자 알고리즘을 이용한 뉴질랜드 Ngauruhoe 화산 하부의 수신함수 역산

  • Park, Iseul (Department of Geophysics, Kangwon National University) ;
  • Kim, Ki Young (Department of Geophysics, Kangwon National University)
  • Received : 2014.10.06
  • Accepted : 2015.02.23
  • Published : 2015.02.28

Abstract

To estimate the shear-wave velocity (${\nu}_s$ beneath the OTVZ seismic station on Ngauruhoe volcano in New Zealand, we calculated receiver functions (RFs) using 127 teleseismic data ($Mw{\geq}5.5$) with high signal-to-noise ratios recorded during November 11, 2011 to September 11, 2013. The genetic inversion algorithms was applied to 21 RFs calculated by the iterative time-domain deconvolution method. In the 1-D ${\nu}_s$ model derived by the inversion, the Moho is observed at a 14 km depth, marked by a ${\nu}_s$ transition from 3.7 km/s to 4.7 km/s. The average ${\nu}_s$ of the overlying crust is 3.4 km/s, and the average ${\nu}_s$ of a greater than 9-km thick low-velocity layer (LVL) in the lower crust is 3.1 km/s. The LVL becomes thinner with increasing distance from the station. Another LVL thicker than 10 km with ${\nu}_s$ less than 4.3 km/s is found in the upper mantle. Those LVLs in the lower crust and the upper mantle and the relatively thin crust might be related to the magma activity caused by the subducting Pacific plate.

뉴질랜드 Ngauruhoe 화산에 설치된 OTVZ 지진관측소 하부의 S파속도(${\nu}_s$)를 규명하기 위해, 2011년 11월 11일에서 2013년 9월 11일까지 기록된 원거리 지진자료($Mw{\geq}5.5$) 중에서 신호 대 잡음비가 높은 127개의 자료만을 이용하여 수신함수를 계산하였다. 수신함수는 시간영역에서 반복적 곱풀기 방법으로 계산되었으며, 21개의 수신함수에 유전자 알고리즘을 적용하여 역산을 실시하였다. 역산으로부터 구한 관측소 하부의 1차원 속도모델은 ${\nu}_s$가 3.7 km/s에서 4.7 km/s로 급격히 변하는 모호면이 14 km 깊이에 존재하며, 지각의 평균 ${\nu}_s$는 3.4 km/s임을 보인다. 하부지각에는 평균 ${\bar}{\nu}_s$ 가 3.1 km/s인 저속도층이 두께 9 km 이내로 존재하며, 관측소에서 멀어질수록 두께가 얇아지는 것으로 분석된다. 또한, 상부맨틀에도 ${\nu}_s$가 4.3 km/s 이하인 저속도층이 10 km 이상의 두께로 존재하며, 이러한 하부지각과 상부맨틀 내에 존재하는 저속도층과 상대적으로 얇은 지각은 태평양판의 섭입에 따른 마그마 활동과 관련이 있을 것으로 추정된다.

Keywords

References

  1. Agostinetti, N. P., and Chiarabba, C., 2008, Seismic structure beneath Mt Vesuvius from receiver function analysis and local earthquakes tomography: evidences for location and geometry of the magma chamber, Geophysical Journal International, 175, 1298-1308. https://doi.org/10.1111/j.1365-246X.2008.03868.x
  2. Ammon, C. J., Randall, G. E., and Zandt, G., 1990, On the nonuniqueeness of receiver function inversions, Journal of Geophysical Research, 95, 15303-15318. https://doi.org/10.1029/JB095iB10p15303
  3. Ammon, C. J., 1992, A comparison of deconvolution techniques, Lawrence Livermore National Laboratory Report, UCID-ID-111667, 1-43.
  4. Bannister, S., Bryan, C. J., and Bibby, H. M., 2004, Shear wave velocity variation across the Taupo Volcanic Zone, New Zealand, from receiver function inversion, Geophysical Journal International, 159, 291-310. https://doi.org/10.1111/j.1365-246X.2004.02384.x
  5. Bianchi, I., Agostinetti, N. P., Gori, P. D., and Chiarabba, C., 2008, Deep structure of the Colli Albani volcanic district (central Italy) from receiver functions analysis, Journal of Geophysical Research: Solid Earth, 113, doi: 10.1029/2007JB005548.
  6. Camp, C., Pezeshk, S., and Cao, G., 1998, Optimized design of two-dimensional structures using a genetic algorithm, Journal of Structural Engineering, 124, 551-559. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(551)
  7. Cassidy, J. F., 1992, Numerical experiments in broadband receiver function analysis, Bulletin of the Seismological Society of America, 82, 1453-1474.
  8. Chang, S.-J., Baag, C.-E., and Langston, C. A., 2004, Joint analysis of teleseismic receiver function and surface wave dispersion using the genetic algorithm, eastern kazakhstan, Bulletin of the Seismological Society of America, 94, 691-704. https://doi.org/10.1785/0120030110
  9. Chen, L., and Ai, Y., 2009, Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration, Journal of Geophysical Research: Solid Earth, 114, doi: 10.1029/2008JB006221.
  10. Clayton, R. W., and Wiggins, R. A., 1976, Source shape estimation and deconvolution of teleseismic body waves, Geophysical Journal Royal Astronomical Society, 47, 151-177. https://doi.org/10.1111/j.1365-246X.1976.tb01267.x
  11. Cole, J. W., 1990, Structure control and origin of volcanism in the Taupo volcanic zone, New Zealand, Bulletin of Volcanology, 52, 445-459. https://doi.org/10.1007/BF00268925
  12. Deering, C. D., Horton, T. W., Gravley, D. M., and Cole, J. W., 2012, Hornblende, cummingtonite, and biotite hydrogen isotopes: Direct evidence of slab-derived fluid flux in silicic magmas of the Taupo Volcanic Zone, New Zealand, Journal of Volcanology and Geothermal Research, 233-234, 27-36. https://doi.org/10.1016/j.jvolgeores.2012.04.010
  13. Dugda, M. T., Workineh, A. T., Homaifar, A., and Kim, J. H., 2012, Receiver function inversion using genetic algorithms, Bulletin of the Seismological Society of America, 102, 2245-2251. https://doi.org/10.1785/0120120001
  14. Graham, I. J., and Hackett, W. R., 1987, Petrology of calcalkaline lavas from Ruapehu volcano and related vents, Taupo Volcanic Zone, New Zealand, Journal of Petrology, 28, 531-567. https://doi.org/10.1093/petrology/28.3.531
  15. Gurrola, H., Minster, J. B., Given, H., Vernon, F., Berger, J., and Aster, R., 1990, Analysis of high-frequency seismic moise in the Western United-States and Eastern Kazakhstan, Bulletin of the Seismological Society of America, 80, 951-970.
  16. Harrison, A., and White, R. S., 2006, Lithospheric structure of an active backarc basin: the Taupo Volcanic Zone, New Zealand, Geophysical Journal International, 167, 968-990. https://doi.org/10.1111/j.1365-246X.2006.03166.x
  17. Heise, W., Caldwell, T. G., Bibby, H. M., and Bennie, S. L., 2010, Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo Volcanic Zone, New Zealand, Geophysical Research Letters, 37, doi: 10.1029/2010GL043110.
  18. Hetland, E. A., Wu, F. T., and Song, J. L., 2004, Crustal structure in the Changbaishan volcanic area, China, determined by modeling receiver functions, Tectonophysics, 386, 157-175. https://doi.org/10.1016/j.tecto.2004.06.001
  19. Hobden, B. J., Houghton, B. F., and Nairn, I. A., 2002, Growth of a young, frequently active composite Ngauruhoe volcano, New Zealand, Bulletin of Volcanology, 64, 392-409. https://doi.org/10.1007/s00445-002-0216-3
  20. Holland, J. H., 1975, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, The University of Michigan press.
  21. Kikuchi, M., and Kanamori, H., 1982, Inversion of complex body waves, Bulletin of the Seismological Society of Hazard Mitigation, 1, 139-155.
  22. Krishnakumar, K., 1989, Micro-genetic algorithms for stationary and non-stationary function optimization, in SPIE, Intelligent Control and Adaptive Systems, Vol. 1196, International Society for Optical Engineering.
  23. Langston, C. A., 1979, Structure under Mount Rainier, Washington, inferred from teleseismic body waves, Journal of Geophysical Research, 84, 4749-4762. https://doi.org/10.1029/JB084iB09p04749
  24. Lawrence, J. F., and Shearer, P. M., 2006, A global study of transition zone thickness using receiver functions, Journal of Geophysical Research: Soild Earth, 111, doi: 10.1029/2005JB003973.
  25. Li, X., Sobolev, S. V., Kind, R., Yuan, X., and Estabrook, Ch., 2000, A detailed receiver function image of the upper mantle discontinuities in the Japan subduction zone, Earth and Planetary Science Letters, 183, 527-541. https://doi.org/10.1016/S0012-821X(00)00294-6
  26. Ligorria, J. P., and Ammon, C. J., 1999, Iterative deconvolution and receiver-function estimation, Bulletin of the Seismological Society of America, 89, 1395-1400.
  27. Mathews, W. H., 1967, A contribution to the geology of the Mount Tongariro massif, North Island, New Zealand, New Zealand Journal of Geology and Geophysics, 10, 1027-1039. https://doi.org/10.1080/00288306.1967.10423205
  28. Nairn, I. A., and Self, S., 1978, Explosive eruptions and pyroclastic avalanches from Ngauruhoe in February 1975, Journal of Volcanology and Geothermal Research, 3, 39-60. https://doi.org/10.1016/0377-0273(78)90003-3
  29. Owens, T. J., Zandt, G., and Taylor, S. R., 1984, Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms, Journal of Geophysical Research: Solid Earth, 89, 7783-7795. https://doi.org/10.1029/JB089iB09p07783
  30. Price, R. C., Turner, S., Cook, C., Hobden, B., Smith, I. E. M., Gamble, J. A., Handley, H., Maas, R., and Mobis, A., 2010, Crustal and mantle influences and U-Th-Ra disequilibrium in andesitic lavas of Ngauruhoe volcano, New Zealand, Chemical Geology, 277, 355-373. https://doi.org/10.1016/j.chemgeo.2010.08.021
  31. Reyners, M., 1980, A microearthquake study of the plate boundary, North Island, New Zealand, Geophysical Journal of the Royal Astronomical Society, 63, 1-22. https://doi.org/10.1111/j.1365-246X.1980.tb02607.x
  32. Sambridge, M., 1999, Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space, Geophysical Journal International, 138, 479-494. https://doi.org/10.1046/j.1365-246X.1999.00876.x
  33. Shibutani, T., Sambridge, M., and Kennett, B., 1996, Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath Eastern Australia, Geophysical Research Letters, 23, 1829-1832. https://doi.org/10.1029/96GL01671
  34. Stern, T. A., 1987, Asymmetric back-arc spreading, heat flux and structure associated with the Central Volcanic Region of New Zealand, Earth and Planetary Science Letters, 85, 265-276. https://doi.org/10.1016/0012-821X(87)90037-9
  35. Stern, T. A., and Davey, F. J., 1987, A seismic investigation of the crustal and upper mantle structure within the Central Volcanic Region of New Zealand, New Zealand Journal of Geology and Geophysics, 30, 217-231. https://doi.org/10.1080/00288306.1987.10552618
  36. Stern, T., Stratford, W., Seward, A., Henderson, M., Savage, M., Smith, E., Benson, A., Greve, S., and Salmon, M., 2010, Crust-mantle structure of the central North Island, New Zealand based on seismological observations, Journal of Volcanology and Geothermal Research, 190, 58-74. https://doi.org/10.1016/j.jvolgeores.2009.11.017
  37. Studt, F. E., and Thompson, G. E. K., 1969, Geothermal heat flow in the North Island of New Zealand, New Zealand Journal of Geology and Geophysics, 12, 673-683. https://doi.org/10.1080/00288306.1969.10431105
  38. Thomson, A. A., and Evison, F. F., 1962, Thickness of the earth's crust in New Zealand, New Zealand Journal of Geology and Geophysics, 5, 29-45. https://doi.org/10.1080/00288306.1962.10420107
  39. Wilson, C. J. N., Houghton, B. F., Mcwilliams, M. O., Lanphere, M. A., Weaver, S. D., and Briggs, R. M., 1995, Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review, Journal of Volcanology and Geothermal Research, 68, 1-28. https://doi.org/10.1016/0377-0273(95)00006-G
  40. Zhu, L., Owens, T. J., and Randall, G. E., 1995, Lateral variation in crustal structure of the Northern Tibetan Plateau inferred from teleseismic receiver functions, Bulletin of the Seismological Society of America, 85, 1531-1540.

Cited by

  1. Electrical Resistivity at Room Temperature and Relation between Physical Properties of Core Samples from Ulleung Island vol.18, pp.4, 2015, https://doi.org/10.7582/GGE.2015.18.4.171