DOI QR코드

DOI QR Code

광대역 스텝 주파수 레이다의 고조파에 대한 영향 분석

An Analysis on Harmonic Effects of Wideband Stepped Frequency Radars

  • Jun, Seung-Hyun (Department of Radio-Wave Engineering, Hanbat National University) ;
  • Kim, Dong-Kyoo (Electronics and Telecommunications Research Institute) ;
  • Lee, Chang-Seok (Department of Radio-Wave Engineering, Hanbat National University) ;
  • Lee, Dong-Ho (Department of Radio-Wave Engineering, Hanbat National University)
  • 투고 : 2014.10.24
  • 심사 : 2015.02.03
  • 발행 : 2015.02.27

초록

광대역 스텝 주파수 레이다(650 MHz~4.5 GHz)에서 신호의 고조파가 시스템의 대역에 포함될 때 어떠한 영향을 주는지 분석하였다. 수식과 시뮬레이션을 통해 분석한 결과, 2차 고조파가 존재하면 실제 거리보다 두 배의 거리에 물체가 있는 것처럼 나타났다. VCO로부터 출력된 신호는 DC와 신호 사이에 다른 신호가 존재하지 않기 때문에 저역 통과 필터를 이용하여 2차 고조파를 효과적으로 제거할 수 있다. 본 논문에서는 두 개의 스위치와 4개의 저역 통과 필터를 이용하여 650 MHz에서 4.5 GHz에 달하는 광대역 신호의 고조파를 제거할 수 있었다.

Harmonic effects in a wideband stepped frequency radar(650 MHz~4.5 GHz) have been analyzed. As a result of numerical analysis and simulation, when the second harmonic exists in each frequency, a time-domain result represents an additional object which does not exist but looks to be located at a distance of twice the original object distance. The second harmonics can be removed effectively by low pass filters because there are no other signals between DC and a fundamental signal. In this paper, the harmonic problem can be solved by removing the second harmonics of 650 MHz to 4.5 GHz wideband fundamental signal with two switches and four low pass filters.

키워드

참고문헌

  1. H. M. Jol, Ground Penetrating Radar: Theory and Applications, Elsevier, pp. 73-97, 2010.
  2. A. S. Turk, A. K. Hocaoglu, and A. A. Vertiy, Subsurface Sensing, Wiley, pp. 64-83, 2011.
  3. G. Farquharson, "Design and implementation of a 200 to 1,600 MHz, stepped frequency, ground penetrating radar transceiver", M. S. Thesis, University of Cape Town, Rondebosch, South Africa, 1999.
  4. M. Jankiraman, Design of Multi-Frequency CW Radars, Scitech Publishing, pp. 135-142, 2007.
  5. S. -E. Hamran, K. Langley, "A 5.3 GHz step-frequency GPR for glacier surface characterisation", Proc. Int. Conf. on Ground Penetrating Radar, Delft, Netherlands, pp. 761-764, Jun. 2004.
  6. A. Langman, S. P. Dimaio, B. E. Burns, and M. R. Inggs, "Development of a low cost SFCW ground penetrating radar", Proc. Int. Geosci. Remote Sens. Symp., Lincoln, NE, United States, pp. 2020-2022, May 1996.
  7. M. J. Oyan, S. -E. Hamran, L. Hanssen, T. Berger, and D. Plettemeier, "Ultrawideband gated step frequency ground-penetrating radar", IEEE Trans. Geosci. Remote Sens., vol. 50, no. 1, pp. 212-220, Jan. 2012. https://doi.org/10.1109/TGRS.2011.2160069
  8. A. V. Oppenheim, A. S. Willsky, Signals and Systems, 한산(번역서), pp. 394-395, 1999.
  9. A. J. Wilkinson, R. T. Lord, and M. R. Inggs, "Stepped-frequency processing by reconstruction of target reflectivity spectrum", Proc. 1998 South African Symp. on Communication and Signal Processing, Rondebosch, South Africa, pp. 101-104, Sep. 1998.
  10. J. D. Taylor, Ultra-wideband Radar Technology, CRC, pp. 303-328, 2000.
  11. M. Sato, K. Yoshida, "Bistatic UWB radar system", Proc. IEEE Int. Conf. Ultra-Wideband, Singapore, pp. 62-65, Sep. 2007.
  12. M. I. Skolnik, Introduction to Radar Systems, 2nd Edition, 광명(번역서), pp. 3-5, 2000.