DOI QR코드

DOI QR Code

Differences in Neural Current Sources of Science Gifted and Normal Children in Creative Reasoning

과학 영재와 일반아의 창의적 추리과정 시 나타나는 신경 전류원의 차이

  • Received : 2015.02.12
  • Accepted : 2015.02.26
  • Published : 2015.02.28

Abstract

본 연구에서는 과학 영재와 일반아의 창의적 추리과정시 나타나는 두뇌사고 패턴을 sLORETA 분석 기법을 통해 분석하고, 신경생리적 특성을 파악하여 과학 영재아 판별의 기초와 활용 가능성을 알아보는 것이다. 본 연구를 위한 대상자는 과학영재아 6명과 동일 학군 및 학년에 속한 일반아 6명으로 총 12명의 오른손잡이로 하였다. 창의적 추리과정을 위해 사용된 과제는 레이븐 도형점진행렬검사를 사용하였고, 안정상태와 과제 수행간 뇌파를 측정하였다. 뇌파는 19개의 전극을 통해 수집된 16초간의 데이터를 통해 분석하였으며, sLORETA 분석 기법을 통해 8개의 주파수 대역(Delta, Theta, Alpha-1/2, Beta-1/2, Gamma, Omega)에 대한 평균 전류밀도값을 그룹별로 비교하였다. 그룹간 두뇌 활성 주파수 대역을 비교한 결과 눈감고 안정 상태에서 과학영재아가 일반아에 비해 알파-2 대역에서, 레이븐 과제 수행시 과학 영재아가 일반아에 비해 알파-1과 감마 대역에서 강한 활성이 관찰되었다. 연구 결과 나타난 알파 및 감마 대역 활성과 우반구로의 기능적 편측화(Lateralization)는 창의적 문제 해결시 영재아에게 나타나는 대표적 특성 중 하나이며, 배외측전전두피질(DLPFC)의 활성은 과학영재아의 높은 유동지능을 반영하는 결과라 볼 수 있다.

Keywords

References

  1. Binkofski, F., Buccino, G., Posse, S., Seitz, R. J., Rizzolatti, G. & Freund, H. (1999). A fronto-parietal circuit for object manipulation in man: Evidence from an fMRIstudy. European Journal of Neuroscience, 11(9), 3276-3286. https://doi.org/10.1046/j.1460-9568.1999.00753.x
  2. Brunet, E., Sarfati, Y., Hardy-Bayle, M. C. & Decety, J. (2000). A PET investigation of the attribution of intentions with a nonverbal task. NeuroImage, 11(2), 157-166. https://doi.org/10.1006/nimg.1999.0525
  3. Bucker, R. L. & Carroll, D. C. (2007). Self-projection and the brain. TRENDS in Cognitive Sciences, 11(2), 49-57. https://doi.org/10.1016/j.tics.2006.11.004
  4. Budzynski, T. H., Budzyski, H. K., Evans, J. R. & Abarbanel, A. (Eds.) (2009). Introduction to quantitative EEG and neurofeedback (2nd ed., pp. 90-93). New York: Elsevier.
  5. Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 1-22. https://doi.org/10.1037/h0046743
  6. Choi, S. Y. & Kang, H. G. (2006). Development of the scientific creative problem solving test for the selection of gifted science students in elementary school. Elementary Science Education, 25(1), 27-38.
  7. Clower, D. M., West, R. A., Lynch, J. C. & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. Journal of Neuroscience, 21, 6283-6291. https://doi.org/10.1523/JNEUROSCI.21-16-06283.2001
  8. Den Ouden, H. E., Frith, U., Frith, C. & Blakemore, S. J. (2005). Thinking about intentions. Neuroimage, 28(4), 787-796. https://doi.org/10.1016/j.neuroimage.2005.05.001
  9. Doppelmayr, M., Klimesch, W., Sauseng, P., Hödlmoser, K., Stadler, W. & Hanslmayr, S. (2005). Intelligence related differences in EEG-bandpower. Neuroscience Letters, 381, 309-313. https://doi.org/10.1016/j.neulet.2005.02.037
  10. Dum, R. P. & Strick, P. L. (2003). An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. Journal of Neurophysiology, 89, 634-639. https://doi.org/10.1152/jn.00626.2002
  11. Fehmi, L. G. & Collura, T. F. (2007). Effects of electrode placement upon EEG biofeedback training: The monopolar-bipolar controversy. Journal of Neurotherapy, 11(2), 45-63. https://doi.org/10.1300/J184v11n02_04
  12. Fink, G. R., Markowitsch, H. J., Reinkemeier, M., Bruckbauer, T., Kessler, J. & Heiss, W. D. (1996). Cerebral representation of one's own past: Neural networks involved in autobiographical memory. Journal of Neuroscience, 16, 4275-4282. https://doi.org/10.1523/JNEUROSCI.16-13-04275.1996
  13. Gray, J. R., Chabris, C. F. & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316-322. https://doi.org/10.1038/nn1014
  14. Grossman, E. D. & Blake, R. (2002). Brain areas active during visual perception of biological motion. Neuron, 35, 1167-1175. https://doi.org/10.1016/S0896-6273(02)00897-8
  15. Ha, G. S., Yu, H. I., Kim, S. Y., Kim, J. J., Hong, K. S., Lee, C. U., Kwon, J. S., Shin, M. S., Lee, M. S., Oh, B. H. & Yeon, B. G. (1999). Preliminary standardization of the computerized standard progressive matrices in Korean adults. Journal of Korean Neuropsychiatry Association, 38(5), 1038-1046.
  16. Horn, J. L. (1985). Remodeling old models of intelligence. In B. B. Wolman (Ed.), Handbook of intelligence (pp. 267-300). New York: Wiley.
  17. Jasper, H. H. (1958), The ten-twenty electrode system of the international federation. Electroencephalography and Clinical Neurophysiology, 10, 371-375.
  18. Jausovec, N. (1997). Differences in EEG alpha activity between gifted and non-identified individuals: Insights into problem solving. Gifted Child Quarterly, 41, 26-32. https://doi.org/10.1177/001698629704100104
  19. Jin, S. H., Kim, S. Y., Park, K. H. & Lee, K. J. (2007). Differences in EEG between gifted and average students: Neural complexity and functional cluster analysis. International Journal of Neuroscience, 117(8), 1167-1184. https://doi.org/10.1080/00207450600934655
  20. Jin, S. H., Kwon, Y. J., Jeong, J. S., Kwon, S. W. & Shin, D. H. (2006b). Increased information transmission during scientific hypothesis generation: Mutual information analysis of multichannel EEG. International Journal of Psychophysiology, 62, 337-344. https://doi.org/10.1016/j.ijpsycho.2006.06.003
  21. Jin, S. H., Kwon, Y. J., Jeong, J. S., Kwon, S. W., & Shin, D. H. (2006a). Differences in brain information transmission between gifted and normal children during scientific hypothesis generation. Brain and Cognition, 62, 191-197. https://doi.org/10.1016/j.bandc.2006.05.001
  22. Kim, D. S. & Choi, J, W. (2001). Electroencephalogram. Seoul: Korea Medical Book Publisher.
  23. Kim, E. J. (2006). The exploration of thinking characteristics of elementary science gifted children within scientific problem solving. Elementary Science Education, 25(2), 179-190.
  24. Klimesch, W., Doppelmayr, M. & Hanslmayr, S. (2006). Upper alpha ERD and absolute power: Their meaning for memory performance. Progress in Brain Research, 259, 151-165.
  25. Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S. & Holyoak, K. J. (2002) Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: A parametric study of relational complexity. Cerebral Cortex, 12, 477-485. https://doi.org/10.1093/cercor/12.5.477
  26. Kwon, C. S. (2005). The prospect and task on elementary science education for the gifted. Elementary Science Education, 24(2), 192-201.
  27. Kwon, S. W., Kang, M. J., Shin, D. H. & Kwon, Y. J. (2007). Development of an EEG based discriminantscale for scientifically gifted students in elementary school. Elementary Science Education, 25(5), 556-566.
  28. Lee, J. H. (2010). A study on identificaiton methods for gifted students with creativity and Toughness in the future society. Korea Foundation for the Advancement of Science & Creativity.
  29. Lee, T. W. (1998). Independent component analysis, computational neurobiology laboratory. Kluwer Academic Publishers, pp. 27-64, 155-157.
  30. Liu, T., Shi, J., Zhao, D. & Yang, J. (2008). The relation ship between EEG band power, cognitive processing and intelligence in school-age children. Psychology Science Quartely, 50(2), 259-268.
  31. Neubauer, A. C., Grabner, R. H., Freudenthaler, H. H., Beckmann, J. F. & Guthke, J. (2004). Intelligence and individual differences in becoming neurally efficient. Acta Psychologica, 116, 55-74. https://doi.org/10.1016/j.actpsy.2003.11.005
  32. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edingurgh inventory. Neuropsychologia, 9, 97-113. https://doi.org/10.1016/0028-3932(71)90067-4
  33. Pa, J. & Hickok, G. (2008). A parietal-temporal sensorymotor integration area for the human vocal tract: Evidence from an fMRI study of skilled musicians. Neuropsychologia, 46, 362-368. https://doi.org/10.1016/j.neuropsychologia.2007.06.024
  34. Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24D, 5-12.
  35. Pavlova, M., Bidet-Ildei, C., Sokolov, A. N., Braun, C. & Krageloh-Mann, I. (2009). Neuromagnetic response to body motion and brain connectivity. Journal of Cognitive Neuroscience, 21, 837-846. https://doi.org/10.1162/jocn.2009.21050
  36. Pavlova, M., Guerreschi, M., Lutzenberger, W. & Krägeloh-Mann, I. (2010). Social interaction revealed by motion: dynamics of neuromagnetic gamma activity. Cerebral Cortex, 20, 2361-2367. https://doi.org/10.1093/cercor/bhp304
  37. Perfetti, B., Saggino, A., Ferretti, A., Caulo, M., Romani, G. L. & Onofr, M. (2009). Differential patterns of cortical activation as a function of fluid reasoning complexity. Human Brain Mapping, 30, 497-510. https://doi.org/10.1002/hbm.20519
  38. Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychology, 33, 43-63. https://doi.org/10.1006/cogp.1997.0659
  39. Raven, J., Raven, J. C. & Court, J. H. (1998). Manual for Raven's progressive matrices and vocabulary scales. London: Oxford Psychologists Press.
  40. Sauseng, P., Klimesch, W., Gruber, W., Doppelmayr, M., Stadler, W. & Schabus, M. (2002). The interplay between theta and alpha oscillations in the human electroencephalogram reflects the transfer of information between memory systems. Neuroscience Letter, 324, 121-124. https://doi.org/10.1016/S0304-3940(02)00225-2
  41. Volz, K. G., Schubotz, R. I. & von Cramon, D. Y. (2005). Variants of uncertainty in decision-making and their neural correlates. Brain Research, 67(5), 403-412. https://doi.org/10.1016/j.brainresbull.2005.06.011

Cited by

  1. The Effects of an Explicit Inquiry Learning Model for Improving Classification Ability of Students with Intellectual Disability - A Brain Wave Study using sLORETA - vol.44, pp.2, 2015, https://doi.org/10.15717/bioedu.2016.44.2.222
  2. Developing a Four-level Learning Progression and Assessment for the Concept of Buoyancy vol.13, pp.8, 2017, https://doi.org/10.12973/eurasia.2017.00976a