DOI QR코드

DOI QR Code

Design of a Low Noise 6-Axis Inertial Sensor IC for Mobile Devices

모바일용 저잡음 6축 관성센서 IC의 설계

  • Kim, Chang Hyun (School of Electrical & Electronic Engineering Yonsei University) ;
  • Chung, Jong-Moon (School of Electrical & Electronic Engineering Yonsei University)
  • Received : 2014.10.16
  • Accepted : 2014.11.06
  • Published : 2015.02.28

Abstract

In this paper, we designed 1 chip IC for 3-axis gyroscope and 3-axis accelerometer used for various IoT/M2M mobile devices such as smartphone, wearable device and etc. We especially focused on analysis of gyroscope noise and proposed new architecture for removing various noise generated by gyroscope MEMS and IC. Gyroscope, accelerometer and geo-magnetic sensors are usually used to detect user motion or to estimate moving distance, direction and relative position. It is very important element to designing a low noise IC because very small amount of noise may be accumulated and affect the estimated position or direction. We made a mathematical model of a gyroscope sensor, analyzed the frequency characteristics of MEMS and circuit, designed a low noise, compact and low power 1 chip 6-axis inertial sensor IC including 3-axis gyroscope and 3-axis accelerometer. As a result, designed IC has 0.01dps/${\sqrt{Hz}}$ of gyroscope sensor noise density.

본 논문에서는 최근 스마트폰이나 웨어러블 디바이스처럼 IoT/M2M 을 위한 여러 종류의 모바일 기기에 사용되는 센서 중에서 각속도를 검출하는데 사용되는 3축 자이로스코프 센서 IC와 가속도를 검출하는데 사용되는 3축 가속도 센서IC를 1 chip으로 하는 6축 관성센서 IC를 설계하였다. 특히 본 논문에는 자이로스코프 센서의 잡음을 분석하고 이를 효과적으로 제거하기 위한 구조를 제안하였다. 자이로스코프 센서는 가속도 센서, 지자기 센서와 더불어 사용자의 동작을 인식하고, 상대적 위치를 추정하기 위한 용도로 사용되는 센서이다. 위치를 추정할 때 사용되는 센서는 아주 작은 잡음이라도 오차로 누적되기 때문에, 정확도를 높이기 위해서 저잡음 IC 설계가 아주 중요한 요소이다. 본 논문에서는 자이로스코프 센서를 모델링하고 MEMS(micro-electro-mechanical system)와 회로에서 발생하는 잡음의 주파수 특성을 분석하여 이를 효과적으로 제거하기 위한 회로 구조를 제안하였으며, 초소형, 저전력 환경에서 사용 가능하면서 잡음 수준이 아주 낮은 3축 자이로스코프 센서와 3축 가속도 센서를 포함하는 6축 1 chip IC를 제작하였다. 제작된 IC는 자이로스코프 센서 잡음의 주요 원인이 되는 quadrature error를 효과적으로 제거하기 위한 회로 구조를 사용하였고, 0.18um CMOS공정을 이용하여 0.01dps/${\sqrt{Hz}}$의 자이로스코프 센서 잡음밀도를 가지는 IC를 제작하였다.

Keywords

References

  1. C. Perera, A. Zaslavsky, P. Christen, and D. Georgaopoulos, "Context aware computing for the internet of things: A survey," IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 414-454, 2014. https://doi.org/10.1109/SURV.2013.042313.00197
  2. C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen, and D. Georgakopoulos, "Sensor search techniques for sensing as a service architecture for the internet of things," IEEE Sensors J., vol. 14, no. 2, pp. 406-420, Feb. 2014. https://doi.org/10.1109/JSEN.2013.2282292
  3. S. W. Lloyd, S. Fan, and M. J. F. Digonnet, "Experimental observation of low noise and low drift in a laser-driven fiber optic gyroscope," J. Lightw. Technol., vol. 31, no. 13, pp. 2079-2085, Jul. 2013.
  4. H. Ma, W. Wang, Y. Ren, and Z. Jin, "Low-noise low-delay digital signal processor for resonant micro optic gyro," IEEE Photonics Technol. Lett., vol. 25, no. 2, pp. 198-201, Jan. 2013. https://doi.org/10.1109/LPT.2012.2233727
  5. F. Hakimi and J. D. Moores, "RIN-reduced light source for ultra-low noise interferometric fibre optic gyroscopes," Electron. Lett., vol. 49, no. 3, pp. 205-207, Jan. 2013. https://doi.org/10.1049/el.2012.3371
  6. K. Lan and W. Shin, "Using smart-phones and floor plans for indoor location tracking," IEEE Trans. Human-Machine Syst., vol. 44, no. 2, pp. 211-221, Apr. 2014. https://doi.org/10.1109/THMS.2013.2296875
  7. Z. Y. Guo, L. T. Lin, Q. C. Zhao, Z. C. Yang, H. Xie, and G. Z. Yan, "A lateral-axis microelectromechanical tuning - fork gyroscope with decoupled comb drive operating at atmospheric pressure," J. Microelectromech. Syst., vol. 19, no. 3, pp. 458-468, Jun. 2010. https://doi.org/10.1109/JMEMS.2010.2046477
  8. A. Walther, C. L. Blanc, N. Delorme, Y. Deimerly, R. Anciant, and J. Willemin, "Bias contributions in a MEMS tuning fork gyroscope," J. Microelectromech. Syst., vol. 22, no. 2, pp. 303-308, Apr. 2013. https://doi.org/10.1109/JMEMS.2012.2221158
  9. M. S. Weinberg and A. Kourepenis, "Error sources in in-plane silicon tuning-fork MEMS gyroscopes," J. Microelectromech. Syst., vol. 15, no. 3, pp. 479-491, Jun. 2006. https://doi.org/10.1109/JMEMS.2006.876779
  10. X. Li, X. Chen, Z. Song, P. Dong, Y. Wang. J. Jiao, and H. Yang, "A microgyroscope with piezoresistance for both high-performance coriolis-effect detection and seesaw-like vibration control," J. Microelectromech. Syst., vol. 15, no. 6, pp. 1698-1707, Dec. 2006. https://doi.org/10.1109/JMEMS.2006.879713
  11. L. Aaltonen, A. Kalanti, M. Pulkkinen, M. Paavola, M. Kamarainen, and K. A. I. Halonen, "A 2.2mA $4.3mm^2$ ASIC for a 1000degree/s 2-Axis capacitive microgyroscope," IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1682-1692, Jul. 2011. https://doi.org/10.1109/JSSC.2011.2144170
  12. A. Sharma, M. F. Zaman, and F. Ayazi, "A 104-dB dynamic range transimpedance-based CMOS ASIC for tuning fork microgyroscopes," IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1790-1802, Aug. 2007. https://doi.org/10.1109/JSSC.2007.900282
  13. J. Raman, E. Cretu, P. Rombouts, and L. Weyten, "A closed-loop digitally controlled MEMS gyroscope with unconstrained sigmadelta force-feedback," IEEE Sensors J., vol. 9, no. 3, pp. 297-305, Mar. 2009. https://doi.org/10.1109/JSEN.2008.2012237
  14. A. Norouzpour-Shirazi, M. F. Zaman, and F. Ayazi, "A digital phase demodulation technique for resonant MEMS gyroscopes," IEEE Sensors J., vol. 14, no. 9, pp. 3260- 3266, Sept. 2014. https://doi.org/10.1109/JSEN.2014.2326974
  15. S. Park and R. Horowitz, "Adaptive control for the conventional mode of operation of MEMS gyroscopes," J. Microelectromech. Syst., vol. 12, no. 1, pp. 101-108, Feb. 2003. https://doi.org/10.1109/JMEMS.2002.807468
  16. A. Sharma, M. F. Zaman, and F. Ayazi, "A sub-0.2degrees/hr bias drift micromechanical silicon gyroscope with automatic CMOS mode-matching," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1593-1608, May 2009. https://doi.org/10.1109/JSSC.2009.2016996
  17. R. P. Leland, "Adaptive control of a MEMS gyroscope using lyapunov methods," IEEE Trans. Control Syst. Technol., vol. 14, no. 2, pp. 278-283, Mar. 2006. https://doi.org/10.1109/TCST.2005.860514
  18. S. Sonmezoglu, S. E. Alper, and T. Akin, "An automatically mode-matched MEMS gyroscope with wide and tunable bandwidth," J. Microelectromech. Syst., vol. 23, no. 2, pp. 284-297, Apr. 2014. https://doi.org/10.1109/JMEMS.2014.2299234
  19. M. Kirrkko-Jaakkola, J. Collin, and J. Takala, "Bias prediction for MEMS gyroscopes," IEEE Sensors J., vol. 12, no. 6, pp. 2157- 2163, Jun. 2012. https://doi.org/10.1109/JSEN.2012.2185692
  20. Z. W. Wu, M. L. Yao, H. G. Ma, and W. M. Jia, "De-noising MEMS inertial sensors for low-cost vehicular attitude estimation based on singular spectrum analysis and independent component analysis," Electron. Lett., vol. 49, no. 14, Jul. 2013.
  21. Y. Dong, M. Kraft, and W. Redman-White, "Micromachined vibratory gyroscopes controlled by a high-order bandpass sigmadelta modulator," IEEE Sensors J., vol. 7, no. 1, pp. 59-69, Jan. 2007. https://doi.org/10.1109/JSEN.2006.888604
  22. J. Georgy, A. Noureldin, M. J. Korenberg, and M. M. Bayoumi, "Modeling the stochastic drift of a MEMS-Based gyroscope in Gyro/ Odometer/GPS integrated navigation," IEEE Trans. Intell. Transportation Syst., vol. 11, no. 4, Dec. 2010.
  23. E. Tatar, S. E. Alper, and T. Akin, "Quadrature -error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes," J. Microelectromech. Syst., vol. 21, no. 3, pp. 656-667, Jun. 2012. https://doi.org/10.1109/JMEMS.2012.2189356
  24. S. Lee, S. Park, J. Kim, S. Lee, and D. Cho, "Surface/bulk micromachined single-crystalline -silicon micro-gyroscope," J. Microelectromech. Syst. vol. 9, no. 4, pp. 557-567, Dec. 2000. https://doi.org/10.1109/84.896779
  25. M. F. Zaman, A. Sharma, and F. Ayazi, "The resonating star gyroscope a novel multipleshell silicon gyroscope with sub-5 deg/hr allan deviation bias instability," IEEE Sensors J., vol. 9, no. 6, pp. 616-624, Jun. 2009. https://doi.org/10.1109/JSEN.2009.2020114
  26. M. Saukoski, L. Aaltonen, and K. A. I. Halonen, "Zero-rat output and quadrature compensation in vibratory MEMS gyroscopes," IEEE Sensors J., vol. 7, no. 12, pp. 1639- 1652, Dec. 2007. https://doi.org/10.1109/JSEN.2007.908921

Cited by

  1. MEMS센서와 확장칼만필터를 적용한 팔의 자세정보 실시간 획득방법 vol.20, pp.6, 2015, https://doi.org/10.5392/jkca.2020.20.06.099