DOI QR코드

DOI QR Code

다중 안테나를 사용하는 단방향 기지국 협력 역 듀플렉스 셀룰러 네트워크의 간섭 정렬 타당성

Feasibility of Interference Alignment for Reverse Duplex in MIMO Cellular Networks with One-side Base Cooperation

  • Kim, Kiyeon (School of Electrical and Electronic Engineering, Yonsei Univ.) ;
  • Jeon, Sang-Woon (Department of Information and Communication Engineering, Andong National Univ.) ;
  • Yang, Janghoon (Department of Newmedia, Korean German Institute of Technology) ;
  • Kim, Dong Ku (School of Electrical and Electronic Engineering, Yonsei Univ.)
  • 투고 : 2014.11.04
  • 심사 : 2015.02.10
  • 발행 : 2015.02.28

초록

본 논문에서는 상향링크와 하향링크가 공존하는 역 듀플렉스 셀룰러 네트워크 상황에서 단방향 기지국 협력을 통한 단사 간섭 정렬 타당성에 대한 연구를 하였다. 일반적인 안테나 개수와 사용자수에 따른 단사 간섭 정렬의 필요조건과 충분조건을 제시하였고, 이어서 특정 조건을 만족하는 네트워크에서 간략화 된 충분조건을 제시하였다. 특히 대칭 네트워크 상황에서는 단사 간섭 정렬의 필요충분조건을 제시하였고, 각 셀 당 두 명의 사용자가 존재하는 대칭 네트워크 상황에서는 닫힌 형태의 필요충분조건을 규명하였다. 제안한 단방향 기지국협력을 통해 합 자유도를 크게 증가시킬 수 있으며, 모의실험을 통해 상용 신호 대 잡음비 영역에서 합 전송률을 획기적으로 개선 할 수 있음을 확인 하였다.

The feasibility conditions of interference alignment (IA) are analyzed for reverse duplex systems, in which one cell operates as downlink (DL) while the other cell operates as uplink (UL) assuming one-sid base station (BS) cooperation. Under general multiple-input and multiple-output (MIMO) antenna configurations, a necessary condition and a sufficient condition for one-shot linear IA are established, i.e., linear IA without symbol or time extension. In several example networks, optimal sum degrees of freedom (DoF) is characterized by the derived necessary condition and sufficient condition. For some special class of networks, a sufficient condition is established in a more compact expression, which also yields the necessary and sufficient condition. Simulation results demonstrate that the proposed IA does not only achieve larger DoF but also significantly improves the sum rate in the practical signal-to-noise ratio (SNR) regime.

키워드

참고문헌

  1. D. Astely, E. Dahlman, G. Fodor, S. Parkvall, and J. Sachs, "LTE release 12 and beyond," IEEE Commun. Mag., vol. 51, no. 7, pp. 154-160, Jul. 2013. https://doi.org/10.1109/MCOM.2013.6553692
  2. 3GPP TR 36.828, Further enhancements to LTE time division duplex (TDD) for downlinkuplink (DL-UL) interference management and traffic adaptation, 3GPP, Jun. 2012. [Online]. Available: http://www.3gpp.org/
  3. I. Sohn, K.-B. Lee, and Y. Choi, "Comparison of decentralized time slot allocation strategies for asymmetric traffic in TDD systems," IEEE Trans. Wirel. Commun., vol. 8, no. 6, pp. 2990-3003, Jun. 2009. https://doi.org/10.1109/TWC.2009.080137
  4. H. Ji, Y. Kim, S. Choi, J. Cho, and J. Lee, "Dynamic resource adaptation in beyond LTE-A TDD heterogeneous networks," in Proc. IEEE Int. Conf. Commun. (ICC), Budapest, Hungary, Jun. 2013.
  5. V. Cadambe and S. Jafar, "Interference alignment and degrees of freedom of the K-user interference channel," IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425-3441, Aug. 2008. https://doi.org/10.1109/TIT.2008.926344
  6. S.-W. Jeon and M. Gastpar, "A survey on interference networks: Interference alignment and neutralization," Entropy, vol. 14, no. 10, pp. 1842-1863, Sept. 2012. https://doi.org/10.3390/e14101842
  7. S. Jafar and M. Fakhereddin, "Degrees of freedom for the MIMO interference channel," IEEE Trans. Inf. Theory, vol. 53, no. 7, pp. 2637-2642, Jul. 2007. https://doi.org/10.1109/TIT.2007.899557
  8. T. Gou and S. Jafar, "Degrees of freedom of the K user M$\times$N MIMO interference channel," IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6040-6057, Dec. 2010. https://doi.org/10.1109/TIT.2010.2080830
  9. S.-W. Jeon and C. Suh, "Degrees of freedom of uplink-downlink multiantenna cellular networks," in arixv:cs.IT/1404.6012, Apr. 2014.
  10. C. Yetis, T. Gou, S. Jafar, and A. Kayran, "On feasibility of interference alignment in MIMO interference networks," IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4771-4782, Sept. 2010. https://doi.org/10.1109/TSP.2010.2050480
  11. M. Razaviyayn, G. Lyubeznik, and Z.-Q. Luo, "On the degrees of freedom achievable through interference alignment in a MIMO interference channel," IEEE Trans. Signal Process., vol. 60, no. 2, pp. 812-821, Feb. 2012. https://doi.org/10.1109/TSP.2011.2173683
  12. L. Ruan, V. Lau, and M. Win, "The feasibility conditions for interference alignment in MIMO networks," IEEE Trans. Signal Process., vol. 61, no. 8, pp. 2066-2077, Apr. 2013. https://doi.org/10.1109/TSP.2013.2241056
  13. G. Bresler, D. Cartwright, and D. Tse, "Feasibility of interference alignment for the mimo interference channel," IEEE Trans. Inf. Theory, vol. 60, no. 9, pp. 5573-5586, Sept. 2014. https://doi.org/10.1109/TIT.2014.2338857
  14. T. Liu and C. Yang, "On the feasibility of linear interference alignment for MIMO interference broadcast channels with constant coefficients," IEEE Trans. Signal Process., vol. 61, no. 9, pp. 2178-2191, May 2013. https://doi.org/10.1109/TSP.2013.2248005
  15. W. Shin, N. Lee, J.-B. Lim, C. Shin, and K. Jang, "On the design of interference alignment scheme for two-cell MIMO interfering broadcast channels," IEEE Trans. Wirel. Commun., vol. 10, no. 2, pp. 437-442, Feb. 2011. https://doi.org/10.1109/TWC.2011.120810.101097
  16. K. Gomadam, V. Cadambe, and S. Jafar, "A distributed numerical approach to interference alignment and applications to wireless interference networks," IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3309-3322, Jun. 2011. https://doi.org/10.1109/TIT.2011.2142270
  17. K. Kim, S.-W. Jeon, J. Yang, and D. K. Kim, "The feasibility of interference alignment for reverse TDD systems in MIMO cellular networks," in arxiv:cs.IT/1410.4624, Aug. 2014.
  18. M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and M. Tanno, "Coordinated multipoint transmission/ reception techniques for LTE-advanced [Coordinated and Distributed MIMO]," IEEE Trans. Wirel. Commun., vol. 17, no. 3, pp. 26-34, Jun. 2010.

피인용 문헌

  1. 전이중 셀룰라 시스템의 간섭 제어에 관한 최근 연구 동향 vol.40, pp.7, 2015, https://doi.org/10.7840/kics.2015.40.7.1266
  2. 기지국 협력 Device-to-Device 통신 전송 프로토콜 연구 vol.41, pp.11, 2015, https://doi.org/10.7840/kics.2016.41.11.1619
  3. Degrees of Freedom for MIMO Z-Interference Channels with Reconfigurable Antennas in the Absence of CSIT vol.42, pp.2, 2015, https://doi.org/10.7840/kics.2017.42.2.291