DOI QR코드

DOI QR Code

지하철 혼잡도 개선방안에 관한 빅데이터융합 기반의 탐색적 연구

An Exploratory Study on Improvement Method of the Subway Congestion Based Big Data Convergence

  • Kim, KeunWon (Dept. of Business Administration, Sunmoon University) ;
  • Kim, DongWoo (Dept. of Business Administration, Sunmoon University) ;
  • Noh, Kyoo-Sung (Dept. of Business Administration, Sunmoon University) ;
  • Lee, Joo-Yeoun (Dept. of Industrial Engineering Ajou University)
  • 투고 : 2014.12.05
  • 심사 : 2015.02.20
  • 발행 : 2015.02.28

초록

빅데이터의 가치가 중요하게 인식되면서 정부를 비롯한 공공기관, 민간기업 등이 빅데이터에 관심을 가지기 시작하였다. 과거와는 다르게 다양한 데이터의 원천이 있고, 이러한 데이터의 융합을 기반으로 한 다양한 기획 및 분석기법이 등장하게 되면서, 빅데이터는 새로운 고급 정보의 창출 및 의사결정 고도화 기반으로 자리매김할 것이 확실하다. 본 연구는 다양한 대책에도 불구하고 개선되지 않는 지하철 혼잡도 문제에 대한 대안을 모색하는 것이다. 이에 본 연구는 서울시의 공공데이터를 활용하여 서울시 지하철의 혼잡도를 개선할 수 있는 방안에 대해 탐색적 접근을 시도하였다. 연구는 서울시 공공데이터 분석을 오픈 소스 R을 통해 이루어졌다. 분석 결과 혼잡도가 높은 지하철 역을 중심으로 운행하는 버스 노선을 신설하는 정책 대안을 도출하게 되었다.

As the value of Bigdata has been recognized importantly, public agencies including the government, private sector, etc. began to have an interest in Big Data. As there are sources of various data, and a variety of planning and analysis methods based on these sources has emerged, It is true that Bigdata will become a tool for creation of the new high qualitied information and decision making based on new insights. The purpose of this study is to find an alternative to the subway congestion problem that is not improved even though the various measures. In this study, we tried to explore approaches for ways to improve the congestion of the Seoul Subway using Seoul Metropolitan public data. Lastly, this study derived a policy alternative to establish new bus route that runs around the metro station that have a high level of congestion.

키워드

참고문헌

  1. Doo-Yong Lee, Zhong-Shi Li, Dong-Hee Kim, Soon-Heum Hong and Chang-Cho Lee, A Study on the Analysis of Subway Crowdedness using Simulator, Journal of Korea Safety Management & Science, 10(4), pp. 267-273, 2008.
  2. IlSoo Yoon, Yul Han, Bigdata and Transportation, Transportation Technology and Policy, 11(1), pp. 64-67, 2014.
  3. In-Kyoo Park, Clustering Algorithm for Data Mining using Posterior Probability-based Information Entropy, Journal of Digital Convergence, 12(12). pp. 293-301, 2014. https://doi.org/10.14400/JDC.2014.12.12.293
  4. Jin-Hyo Kim, Suk-Yun Han, Woo-Ding Lee, Review of the Congestion Status of the Subway Station, Korean Society for Railway, Proceedings of 2008 Spring Conference, pp. 1810-1816, 2008.
  5. Jun-Seok Lee, A Study on the Data Mining Preprocessing Tool For Efficient Database Marketing 12(11), pp.257-264, 2014. https://doi.org/10.14400/JDC.2014.12.11.257
  6. Ki-hyoung Han, Hyung-Jong Jeong, Doog-Sik Lee, Myung-hui Chae, Cheol-hee Yoon, Kyoo-sung Noh, A Study on implementation model for security log analysis system using Big Data platform, Journal of Digital Convergence 12(8), 2014.
  7. Kyoo-Sung Noh, A Study on Utilization Strategy of Big Data for Local Administration by Analyzing Cases, Journal of Digital Convergence 12(1) pp. 89-97, 2014. https://doi.org/10.14400/JDPM.2014.12.1.89
  8. Kyoo-Sung Noh, Smart Learning Strategies utilizing Convergence of e-Learning and Bigdata, Journal of Digital Convergence, 13(1), pp. 487-493, 2015. https://doi.org/10.14400/JDC.2015.13.1.487
  9. Kyoo-Sung Noh, Sanghwi Park, An Exploratory Study on Application Plan of Big Data to Manufacturing Execution System, Journal of Digital Convergence 12(1), pp. 305-311, 2014. https://doi.org/10.14400/JDPM.2014.12.1.305
  10. Press Report, Pilot Program for Relieving Congestion Was Effective, Seoul Metro, 2011.
  11. Seong-Hwan Ju, Kyoo-Sung Noh, A Study on Policy for Data Convergence infrastructure of e-Learning Industry, Journal of Digital Convergence, 13(1), pp. 77-83, 2015. https://doi.org/10.14400/JDC.2015.13.1.77
  12. Su Hyeon Namn, Kyoo-Sung Noh, A Study on the Effective Approaches to Big Data Planning, Journal of Digital Convergence, 13(1), pp. 227-235, 2015. https://doi.org/10.14400/JDC.2015.13.1.227
  13. Suk-Joo Lee, Ji-Yoon Yeon, Seung-Hun Chun, Big Data for Transportation Policies and Their Applications, Korea Transport Institute Research Series 192, pp.50-57, 2013.
  14. Takagi R., Goodman C. J. and Roberts C, "Optimization of train departure times at an interchange considering passenger flows", Proc. IMechE Vol. 220 Part F. J. of Rail and Rapid Transit 2006, 2006.
  15. Young-ki Jung, Myung-gun Suk, Chang-Jae Kim, A study on the success factors of Big Data through an analysis of introduction effect of Big Data, Journal of Digital Convergence, 12(11), pp.241-248, 2014. https://doi.org/10.14400/JDC.2014.12.11.241