DOI QR코드

DOI QR Code

A Study on the Estimation of BVOCs Emission in Jeju Island (2): Emission Characteristic and Situation

제주지역 BVOCs의 배출량 산정에 관한 연구(2): 배출량 특성 및 실태

  • Lee, Ki-Ho (Department of Environmental Engineering, Jeju National University) ;
  • Kim, Hyeong-Cheol (Institute of Environmental Resource Research, Jeju Special Self-Governing Province) ;
  • Hu, Chul-Goo (Department of Environmental Engineering, Jeju National University)
  • 이기호 (제주대학교 환경공학과) ;
  • 김형철 (제주특별자치도 보건환경연구원) ;
  • 허철구 (제주대학교 환경공학과)
  • Received : 2014.11.17
  • Accepted : 2015.01.30
  • Published : 2015.02.27

Abstract

The purpose of this study is to show the geographical distribution and the temporal variation of the emission amount of biogenic volatile organic compounds(BVOCs) emanated from forests at Jeju Island. The total emission amount of BVOCs calculated by using the CORINAIR Methodology is $3612ton\;yr^{-1}$ at Jeju Island. More than half of BVOCs emissions is come from coniferous forest, and 45 per cent from broad leaved forest. The others is attributed to grassland. Of total emission of BVOCs, isoprene accounts for 28 per cent, monoterpene for 32 per cent, and other VOCs for about 40 percent, respectively. It can be shown that $3000{\sim}10000kg\;yr^{-1}$ of BVOCs is emitted at the zone with dense forest from an altitude of 500 m to the top of Mt. Halla, and less than $1500kg\;yr^{-1}$ at the zone an altitude of below 500 meters. The monoterpene emission is more than $1500kg\;yr^{-1}$ due to the existence of a colony of Abies koreana at the place with more than 1500 meters and a community of Pinus thunbergii and Cryptomeria japonica at the elevation of 500~700 m. In the case of isoprene emission, there is $1500{\sim}3000kg\;yr^{-1}$ at the zone of an elevation from 700 m to 1500 m due to dense broad leaved forest and very little of its emission at an elevation of more than 1500 meters because there is hardly broad leaved trees grown. In this study, emission of BVOCs according to the altitude above sea level is estimated under the situation of lack of the data for broad leaved tree. More detailed data and information for the distribution of broad leaved trees are needed in order to calculate more realistic BVOC emission.

Keywords

References

  1. Alex, B., Guenther, A., Patric, R., Zimmerman, P., and Peter, C., 1993, Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analysis, J. Geophys. Res., 98(D7), 12,609-12,617. https://doi.org/10.1029/93JD00527
  2. Altshuller, A., 1983, Review: Natural volatile organic substances and their effect on air quality in the United States, Atmos. Environ., 17, 2131-2165. https://doi.org/10.1016/0004-6981(83)90211-1
  3. Arey, J., David, E. C., Margaret, C., Margaret, R., and Julia, L., 1995, Hydrocarbon emissions from natural vegetation in california's south coast air basin, Atmos. Environ., 29(21), 2977-2988. https://doi.org/10.1016/1352-2310(95)00137-N
  4. Chen, J., Agriffin, R. J., 2005, Modeling secondary organic aerosol formation from oxidation of ${\alpha}$-pinene, ${\beta}$-pinene, and d-limonene, Atmos. Environ. 39, 7731-7744. https://doi.org/10.1016/j.atmosenv.2005.05.049
  5. Cho, K.T., Kim J.C., Hong, J.H., 2006, A study on the comparison of biogenic VOC(BVOCs) emissions estimates by BEIS and CORINAIR methodologies, Journal of Korean Society for Atmospheric Environment, 22(2), 167-177.
  6. Derwent R. G., Jenkin, M. E., Saunders, S. M., 2004, Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions, Atmos. Environ. 30, 181-199.
  7. Dimitriades, B., 1981, The role of natural organics in photochemical air pollution, J. Air Pollution and Control Associ, 31, 229-235. https://doi.org/10.1080/00022470.1981.10465213
  8. EEA(European Environment Agency), 2002, http://www.eea.europa.eu/publications/technical_report_2001_3/group11.pdf/view.
  9. Geron C., Guenther, A., Greenberg, J., Loescher, H. W., Clark, D., Baker, B., 2002, Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica, Atmos. Environ., 36, 3793-3802. https://doi.org/10.1016/S1352-2310(02)00301-1
  10. Guenther, A., Zimmerman, P., Wildermuth, M., 1994, Natural volatile organic compound emission rate estimates for U.S woodland landscapes, Atmos. Environ., 28, 1197-1210. https://doi.org/10.1016/1352-2310(94)90297-6
  11. Guenther, A., Monson, R., and Fall, R., 1991, "Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development." J. Geophys. Res., 96D, 10799-10808.
  12. Guenther, A., Zimmerman, P., Harley, P., Monson, R., and Fall, R., 1993, "Isoprene and monoterpene emission rate variability: model evaluation and sensitivity analysis," J. Geophys. Res., 8D, 12609-12617.
  13. Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Genron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P., 1995, A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873-8892. https://doi.org/10.1029/94JD02950
  14. Harrison, D., Hunter, M.C., Lewis, A.C., Seakins, P.W., Bonsang, B., Gros, V., Kanakidou, M., Touaty, M., Kavouras, I., Mihalopoulos, N., Stephanou, X., Alves, C., Nunes, T., Pio, C., 2001, Ambient isoprene and monoterpene concentrations in a greed fir forest. Reconciliation with emissions measurements and effects on measured OH concentrations, Atmos. Environ., 35, 4699-4711. https://doi.org/10.1016/S1352-2310(01)00091-7
  15. Hristoffersen, T. S., Hjorth, J., Horie, O., Jensen, N. R., Kotzias, D., Molander, L. L., Neeb, P., Ruppert, L., Winterhalter, R., Virkkula, A., Wirtz, K., Larsen, B. R., 1998, Cis-Pinic acid, a possible precursor for organic aerosol formation from ozonolysis of ${\alpha}$-pinene, Atmos. Environ., 32(10), 1657-1661. https://doi.org/10.1016/S1352-2310(97)00448-2
  16. Jeju-do(Jeju Special Self-Governing Province), 2008, http://gis.jeju.go.kr/.
  17. Ji, D.Y., Kim S.Y., Han J.S., 2002, A study on the comparison to source profile of the major terpenes from pine tree and korean pine tree, Journal of Korean Society for Atmospheric Environment, 18(6), 515-525.
  18. Kesselmeier, J., Kuhn, U., Wolf, A., Andreae, M. O., Ciccioli, P., Brancaleoni, E., Frattoni, M., Guenther, A., Greenberg, J., Vasconcellos, P. D. C., Oliva, T., Tavares, T., Artaxo, P., 2000, Atmospheric volatile organic compounds(VOC) at a remote tropical forest site in central Amazonia, Atmos. Environ., 34, 4063-4072. https://doi.org/10.1016/S1352-2310(00)00186-2
  19. Kim, H.C., 2013, Characteristics of Biogenic VOCs emission and the impact on the Ozone formation in Jeju Island, Ph. D. Dissertation, Jeju National Univ., Jeju Special Self-Governing Province, Korea.
  20. Kim, H.C., Lee, K.H., 2010, A study on Emission rates of VOCs from Conifers at Jeju Island, Journal of the Environmental Sciences, 19, 627-637. https://doi.org/10.5322/JES.2010.19.5.627
  21. Kim, H.C., Lee, K.H., 2012, A study on emission rate of BVOCs from broad-leaved trees at Jeju Island, Journal of the Environmental Sciences, 21, 613-724. https://doi.org/10.5322/JES.2012.21.5.613
  22. Kim, J.C., Kim, K.J., Hong, J.H., Sunwoo, Y., Lim, S.G., 2004, A Comparison Study on Isoprene Emission Rates from Oak Trees in Summer, Journal of Korean Society for Atmospheric Environment, 20, 111-118.
  23. Kim, S.T., Moon N.K., Cho K.T., 2008, Estimation of Biogenic emissions over south Korea and its evaluation using air quality simulations, Journal of Korean Society for Atmospheric Environment, 24(4), 423-438. https://doi.org/10.5572/KOSAE.2008.24.4.423
  24. KFRI(Korea national forest research institute), 1994, Hardwood Forest Inventory Report: Jeju planning district. Report No. 85, Seoul, Korea.
  25. Lee, K.H., Kim, H.C., Hu, C.G., 2014, A Study on the estimation of BVOCs emission in Jeju Island (1), Journal of Environmental Science International, 23(12), 2057-2069. https://doi.org/10.5322/JESI.2014.23.12.2057
  26. Moukhtar, S., Bessagnet, B., Rouil, L., Simon, V., 2005, Monoterpene emissions from beech(fagus sylvatica) in a french forest and impact on secondary pollutants formation at regional scale, Atmos. Environ., 39, 3535-3547. https://doi.org/10.1016/j.atmosenv.2005.02.031
  27. NIER, 2005, http://webbook.me.go.kr/DLi-File/NIER/06/016/170001.pdf (acess on Sep. 30, 2014).
  28. NRC(National Research Council), 1991, Rethinking the ozone problem in urban and regional air pollution, National Academy Press, Washington, District Columbia.
  29. Rinne, J., Hakola, H., Laurila, T., Rannik, U., 2000, Canopy scale monoterpene emissions of Pinus sylvestris dominated forests, Atmos. Environ., 34, 1099-1107. https://doi.org/10.1016/S1352-2310(99)00335-0
  30. Rinne, H.J.I., Guenther, A.B., Greenberg, J.P., Harley, P.C., 2002, Isoprene and monoterpene fluxes measured above amazonian rainforest and their dependence on light and temperature, Atmos. Environ., 36, 2421-2426. https://doi.org/10.1016/S1352-2310(01)00523-4
  31. Tarvainen, V., Hakola, H., Hellen, H., Back, J., Hari, P., and kulmala, M., 2005, Tempenrature and light dependence of the VOC emissions of Scots pine, Atmos. Chem. Phys., 989-998.