References
- Alt, J.C. and Jiang, W.-T. (1991) Hydrothermally precipitated mixed-layer illite-smectite in recent massive sulfide deposits from the sea floor. Geology, v.19, p.570-573. https://doi.org/10.1130/0091-7613(1991)019<0570:HPMLIS>2.3.CO;2
- Cheong C.-S. and Kim, N. (2012) Review of radiometric ages for Phanerozoic granitoids in South Korean Peninsula. Journal of the Petrological Society of Korea, v.21, p.173-191(in Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.2.173
- Chung, D., Song, Y., Kang, I.-M. and Park, C.-Y. (2013) Optimization of Illite Polytype Quantification Method. Economic and Environmental Geology, v.46, p.1-9(in Korean with English abstract). https://doi.org/10.9719/EEG.2013.46.1.1
- Chung, D., Song, Y., Park, C.-Y., Kang, I.-M., Choi, S.-J. and Khulganakhuu, C. (2014) Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period. Economic and Environmental Geology, v.47, p.29-38(in Korean with English abstract). https://doi.org/10.9719/EEG.2014.47.1.29
- Choi, S.J., Chwae, U., Lee, H.-K., Song, Y., and Kang, I.-M. (2012) Review on Chugaryeong Fault. Economic and Environmental Geology, v.45, p.441-446 (in Korean with English abstract). https://doi.org/10.9719/EEG.2012.45.4.441
- Choi, P.-B., Kim, H., Lee, S.R., and Kwon, S. (2009) Geological report of the Inje sheet (scale 1:50,000). Korea Institute of Geoscience and Mineral Resources (KIGAM), 58p.
- Duvall, A.R., Clark, M.K., van der Pluijm, B.A. and Li, C. (2011) Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth and Planetary Science Letters, v.304, p.520-526. https://doi.org/10.1016/j.epsl.2011.02.028
- Grathoff, G.H. and Moore, D.M. (1996) Illite polytype quantification using Wildfire calculated X-ray diffraction patterns. Clays and Clay Minerals, v.44, p.835-842. https://doi.org/10.1346/CCMN.1996.0440615
- Grathoff, G.H., Moore, D.M., Hay, R.L. and Wemmer, K. (2001) Origin of illite in the lower Paleozoic of the Illinois basin; evidence for brine migration. Geological Society of America Bulletin, v.113, p.1092-1104. https://doi.org/10.1130/0016-7606(2001)113<1092:OOIITL>2.0.CO;2
- Haines, S.H. and van der Pluijm, B.A. (2008) Clay quantification and Ar-Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatan detachment fault, Sonora, Mexico. J. Structural Geology, v.30, 525-538. https://doi.org/10.1016/j.jsg.2007.11.012
- Inoue, A., Utada. M. and Wakita, K. (1992) Smectite-toillite conversion in natural hydrothermal systems. Applied Clay Science, v.7, p.131-145. https://doi.org/10.1016/0169-1317(92)90035-L
- Itaya, T., Nagao, K., Inoue, K., Honjou, Y., Okada, T. and Ogata, A. (1991) Argon isotopic analysis by newly developed mass spectrometric system for K-Ar dating. Mineralogical Journal, v.15, 203-221. https://doi.org/10.2465/minerj.15.203
- KIGAM (1995) Geological Map of Korea (1:1,000,000), KIGAM.
- KIGAM (2012) Active Fault Map and Seismic Harzard Map, KIGAM report (NEMA-자연-2009-24), KIGAM, 899p.
- Kim, J.C., Ko, H.J., Lee, S.R., Lee, C.B., Choi, S.-J., and Park, K.H. (2001) Explanatory Note of the Gangreung-Sokcho sheet (scale 1:250,000). Korea Institute of Geoscience and Mineral Resources (KIGAM), 76p.
-
Kuwahara, Y., Uehara, S. and Aoki, Y. (1998) Surface microtopography of lath-shaped hydrothermal illite by tapping-mode
$^{TM}$ , and contact-mode AFM. Clays and Clay Minerals, v.46, p.574-582. https://doi.org/10.1346/CCMN.1998.0460511 - Kuwahara, Y., Uehara, S. and Aoki, Y. (2001) Atomic Force Microscopy study of hydrothermal illite in Izumiyama pottery stone from Arita, Saga prefecture, Japan. Clays and Clay Minerals, v.49, p.300-309. https://doi.org/10.1346/CCMN.2001.0490404
- Lee, D.-S. (1987) Geology of Korea. Geological Society of Korea, Kyohak-sa. 514p.
- Lee, S.G., Shin, S.C., Kim, K,H., Lee, T., Koh, H. and Song, Y.S. (2010) Petrogenesis of three Cretaceous granites in the Okcheon Metamorphic Belt, South Korea: Geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Research, v.17, p.87-101. https://doi.org/10.1016/j.gr.2009.04.012
- Ludwig, K.R. (2003) User's manual for Isoplot 3.00a Geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
- Pevear, D.R. (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Kharaka, Y.K. and Maest, A.S. (eds.) Water-Rock interaction. Balkema, Rotterdam, p.1251-1254.
- Pevear, D.R. (1999) Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, v.96 no. 7, p.3440-3446. https://doi.org/10.1073/pnas.96.7.3440
- Rahl, J.M., Haines, S.H. and van der Pluijm, B.A. (2011) Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth and Planetary Science Letters, v.307, p.180-190. https://doi.org/10.1016/j.epsl.2011.04.036
- Reynolds, R.C.Jr. (1994) WILDFIRE: a computer program for the calculation of three dimensional X-ray diffraction patterns of mica polytypes and their disordered variation. 8 Brook Rd.
- Schleicher, A.M., Warr, L.N., Kober, B., Laverret, E. and Clauer, N. (2006) Episodic mineralization of hydrothermal illite in the Soultz-sous-Forts granite (Upper Rhine Graben, France). Contributions to Mineralogy and Petrology, v.152, p.349-364. https://doi.org/10.1007/s00410-006-0110-7
- Schleicher, A.M., van der Pluijm, B.A. and Warr, L.N. (2010) Nanocoatings of clay and creep of the San Andreas fault at Perkfield, California. Geology, v.38, p.667-670. https://doi.org/10.1130/G31091.1
- Solum, J.G., van der Pluijm, B.A. and Peacor, D.R. (2005) Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. Journal of Structural Geology, v.27, p.1563-1576. https://doi.org/10.1016/j.jsg.2005.05.002
- Song, Y., Chung, D., Choi, S.-J., Kang, I.-M., Park, C., Itaya, T. and Yi, K. (2014) K-Ar illite dating to constrain multiple events in shallow crustal rocks: Implications for the Late Phanerozoic evolution of NE Asia. Journal of Asian Earth Sciences, v. 95, p.313-322. https://doi.org/10.1016/j.jseaes.2014.05.018
- Srodon, J. and Eberl, D.D. (1984) Illite. In Bailey, S.W. (ed.) Micas, Reviews in Mineralogy. Mineralogical Society of America, Washington DC. 13, p.495-544.
- van der Pluijm, B.A., Hall, C.M., Vrolijk, P.J., Pevear, D.R., and Covey, M.C. (2001) The dating of shallow faults in the Earth's crust. Nature, v.412, p.172-175. https://doi.org/10.1038/35084053
- van der Pluijm, B.A., Vrolijk, P.J., Pevear, D.R., Hall, C.M. and Solum, J.G. (2006) Fault dating in the Canadian Rocky Mountains; Evidence for late Cretaceous and early Eocene orogenic pulse. Geology, v.34, p.837-840. https://doi.org/10.1130/G22610.1
- Vrolijk, P. and van der Pluijm, B.A. (1999) Clay gouge. Journal of Structural Geology, v.21, p.1039-1048. https://doi.org/10.1016/S0191-8141(99)00103-0
- Williams, I.S. (1998) U-Th-Pb geochronology by ion microprobe. In: McKibben, M.A., Shanks, W.C.III., Ridley, W.L. (Eds.), Applications of microanalytical techniques to understanding mineralizing processes. Society of Economic Geologists, Socorro: Reviews in Economic Geology, v.7, p.1-35.
- Williams, I.S. and Claesson, S. (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes. Scandinavian Caledonides. II. Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy and Petrology, v.97, p.205-217. https://doi.org/10.1007/BF00371240
- Williams, I.S., Cho, D.L. and Kim, S.W. (2009) Geochronology, and geochemical and Nd-Sr isotopic characteristics of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: constraints on Triassic post-collisional magmatism. Lithos, v.107, p.239-256. https://doi.org/10.1016/j.lithos.2008.10.017
- Ylagan, R.F., Pevear, D.R. and Vrolijk, P.J. (2000) Discussion of "Extracting K-Ar ages from shales: a theoretical test". Clay Minerals, v.35 p.599-604. https://doi.org/10.1180/000985500546918
Cited by
- Geological characteristics of the Gangwondo Yanggu terra alba used for a major raw material of the Joseon white porcelain vol.52, pp.6, 2016, https://doi.org/10.14770/jgsk.2016.52.6.815
- Reactivated Timings of Yangsan Fault in the Sangcheon-ri Area, Korea vol.49, pp.2, 2016, https://doi.org/10.9719/EEG.2016.49.2.97