DOI QR코드

DOI QR Code

Reactivated Timings of Inje Fault since the Mesozoic Era

인제단층의 중생대 이 후 재활동 연대

  • Received : 2015.02.16
  • Accepted : 2015.02.25
  • Published : 2015.02.28

Abstract

Recently developed illite-age-analysis(IAA) approach was applied to determine the fault-reactivated events for the Inje fault that cut through Precambrian biotite granitic gneiss with NNE-SSW trend in the middle of Korean peninsula. Three distinct fault-reactivated events of shallow crustal regime were recognized using the combined approach of optimized illite-polytype quantification and K-Ar age-dating of clay fractions separated from 4 fault clay samples: $87.0{\pm}0.12Ma$, $65.5{\pm}0.05$ and $66.6{\pm}1.38Ma$, $45.6{\pm}0.15Ma$, respectively. As well, $2M_1$ illite ages of 193~196 Ma and $254.3{\pm}6.96Ma$ were discernible, which may be related to the fault-activated time in the relatively deep crust. The study results suggest that the Inje fault would be firstly formed at $254.3^{\circ}$ ${\ae}6.96Ma$ and sporadically reactivated in shallow regime since about 87 Ma. These reactivation events in shallow regime might be due to the Bulguksa orogeny that would be strongly influenced in Korean peninsula at that time.

본 연구에서는 한반도 중부지역 주요단층 중의 하나로 선캠브리아기의 흑운모 화강편마암을 절단하는 인제단층의 단층점토에 대한 IAA법 적용 및 해석을 통해 단층 재활동 절대연대를 결정하였다. 인제단층 홍천지점에서 채취된 4개 단층시료에 대한 K-Ar 연대측정 및 IAA 해석 결과, 3회($87.0{\pm}0.12Ma$, $65.5{\pm}0.05$$66.6{\pm}1.38Ma$, $45.6{\pm}0.15Ma$)의 뚜렷한 천부 단층 재활동연대가 확인되었다. 동일한 방법으로 결정된 193~196 Ma 및 $254.3{\pm}6.96Ma$$2M_1$ 일라이트 연대는 상대적으로 심부의 단층활동과 연관된 것으로 보인다. 본 연구결과들은 $254.3{\pm}6.96Ma$ 시기에 인제단층이 처음 생성되었을 가능성이 있으며, 약 87 Ma 이 후로는 천부 지각에서의 단층활동이 일어났었음을 제시한다. 약 87 Ma 이 후의 천부 지각 단층활동은 동 시기를 전후로 해서 한반도에 영향을 불국사 조산운동에 기인하는 것으로 생각된다.

Keywords

References

  1. Alt, J.C. and Jiang, W.-T. (1991) Hydrothermally precipitated mixed-layer illite-smectite in recent massive sulfide deposits from the sea floor. Geology, v.19, p.570-573. https://doi.org/10.1130/0091-7613(1991)019<0570:HPMLIS>2.3.CO;2
  2. Cheong C.-S. and Kim, N. (2012) Review of radiometric ages for Phanerozoic granitoids in South Korean Peninsula. Journal of the Petrological Society of Korea, v.21, p.173-191(in Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.2.173
  3. Chung, D., Song, Y., Kang, I.-M. and Park, C.-Y. (2013) Optimization of Illite Polytype Quantification Method. Economic and Environmental Geology, v.46, p.1-9(in Korean with English abstract). https://doi.org/10.9719/EEG.2013.46.1.1
  4. Chung, D., Song, Y., Park, C.-Y., Kang, I.-M., Choi, S.-J. and Khulganakhuu, C. (2014) Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period. Economic and Environmental Geology, v.47, p.29-38(in Korean with English abstract). https://doi.org/10.9719/EEG.2014.47.1.29
  5. Choi, S.J., Chwae, U., Lee, H.-K., Song, Y., and Kang, I.-M. (2012) Review on Chugaryeong Fault. Economic and Environmental Geology, v.45, p.441-446 (in Korean with English abstract). https://doi.org/10.9719/EEG.2012.45.4.441
  6. Choi, P.-B., Kim, H., Lee, S.R., and Kwon, S. (2009) Geological report of the Inje sheet (scale 1:50,000). Korea Institute of Geoscience and Mineral Resources (KIGAM), 58p.
  7. Duvall, A.R., Clark, M.K., van der Pluijm, B.A. and Li, C. (2011) Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth and Planetary Science Letters, v.304, p.520-526. https://doi.org/10.1016/j.epsl.2011.02.028
  8. Grathoff, G.H. and Moore, D.M. (1996) Illite polytype quantification using Wildfire calculated X-ray diffraction patterns. Clays and Clay Minerals, v.44, p.835-842. https://doi.org/10.1346/CCMN.1996.0440615
  9. Grathoff, G.H., Moore, D.M., Hay, R.L. and Wemmer, K. (2001) Origin of illite in the lower Paleozoic of the Illinois basin; evidence for brine migration. Geological Society of America Bulletin, v.113, p.1092-1104. https://doi.org/10.1130/0016-7606(2001)113<1092:OOIITL>2.0.CO;2
  10. Haines, S.H. and van der Pluijm, B.A. (2008) Clay quantification and Ar-Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatan detachment fault, Sonora, Mexico. J. Structural Geology, v.30, 525-538. https://doi.org/10.1016/j.jsg.2007.11.012
  11. Inoue, A., Utada. M. and Wakita, K. (1992) Smectite-toillite conversion in natural hydrothermal systems. Applied Clay Science, v.7, p.131-145. https://doi.org/10.1016/0169-1317(92)90035-L
  12. Itaya, T., Nagao, K., Inoue, K., Honjou, Y., Okada, T. and Ogata, A. (1991) Argon isotopic analysis by newly developed mass spectrometric system for K-Ar dating. Mineralogical Journal, v.15, 203-221. https://doi.org/10.2465/minerj.15.203
  13. KIGAM (1995) Geological Map of Korea (1:1,000,000), KIGAM.
  14. KIGAM (2012) Active Fault Map and Seismic Harzard Map, KIGAM report (NEMA-자연-2009-24), KIGAM, 899p.
  15. Kim, J.C., Ko, H.J., Lee, S.R., Lee, C.B., Choi, S.-J., and Park, K.H. (2001) Explanatory Note of the Gangreung-Sokcho sheet (scale 1:250,000). Korea Institute of Geoscience and Mineral Resources (KIGAM), 76p.
  16. Kuwahara, Y., Uehara, S. and Aoki, Y. (1998) Surface microtopography of lath-shaped hydrothermal illite by tapping-mode$^{TM}$, and contact-mode AFM. Clays and Clay Minerals, v.46, p.574-582. https://doi.org/10.1346/CCMN.1998.0460511
  17. Kuwahara, Y., Uehara, S. and Aoki, Y. (2001) Atomic Force Microscopy study of hydrothermal illite in Izumiyama pottery stone from Arita, Saga prefecture, Japan. Clays and Clay Minerals, v.49, p.300-309. https://doi.org/10.1346/CCMN.2001.0490404
  18. Lee, D.-S. (1987) Geology of Korea. Geological Society of Korea, Kyohak-sa. 514p.
  19. Lee, S.G., Shin, S.C., Kim, K,H., Lee, T., Koh, H. and Song, Y.S. (2010) Petrogenesis of three Cretaceous granites in the Okcheon Metamorphic Belt, South Korea: Geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Research, v.17, p.87-101. https://doi.org/10.1016/j.gr.2009.04.012
  20. Ludwig, K.R. (2003) User's manual for Isoplot 3.00a Geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
  21. Pevear, D.R. (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Kharaka, Y.K. and Maest, A.S. (eds.) Water-Rock interaction. Balkema, Rotterdam, p.1251-1254.
  22. Pevear, D.R. (1999) Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, v.96 no. 7, p.3440-3446. https://doi.org/10.1073/pnas.96.7.3440
  23. Rahl, J.M., Haines, S.H. and van der Pluijm, B.A. (2011) Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth and Planetary Science Letters, v.307, p.180-190. https://doi.org/10.1016/j.epsl.2011.04.036
  24. Reynolds, R.C.Jr. (1994) WILDFIRE: a computer program for the calculation of three dimensional X-ray diffraction patterns of mica polytypes and their disordered variation. 8 Brook Rd.
  25. Schleicher, A.M., Warr, L.N., Kober, B., Laverret, E. and Clauer, N. (2006) Episodic mineralization of hydrothermal illite in the Soultz-sous-Forts granite (Upper Rhine Graben, France). Contributions to Mineralogy and Petrology, v.152, p.349-364. https://doi.org/10.1007/s00410-006-0110-7
  26. Schleicher, A.M., van der Pluijm, B.A. and Warr, L.N. (2010) Nanocoatings of clay and creep of the San Andreas fault at Perkfield, California. Geology, v.38, p.667-670. https://doi.org/10.1130/G31091.1
  27. Solum, J.G., van der Pluijm, B.A. and Peacor, D.R. (2005) Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. Journal of Structural Geology, v.27, p.1563-1576. https://doi.org/10.1016/j.jsg.2005.05.002
  28. Song, Y., Chung, D., Choi, S.-J., Kang, I.-M., Park, C., Itaya, T. and Yi, K. (2014) K-Ar illite dating to constrain multiple events in shallow crustal rocks: Implications for the Late Phanerozoic evolution of NE Asia. Journal of Asian Earth Sciences, v. 95, p.313-322. https://doi.org/10.1016/j.jseaes.2014.05.018
  29. Srodon, J. and Eberl, D.D. (1984) Illite. In Bailey, S.W. (ed.) Micas, Reviews in Mineralogy. Mineralogical Society of America, Washington DC. 13, p.495-544.
  30. van der Pluijm, B.A., Hall, C.M., Vrolijk, P.J., Pevear, D.R., and Covey, M.C. (2001) The dating of shallow faults in the Earth's crust. Nature, v.412, p.172-175. https://doi.org/10.1038/35084053
  31. van der Pluijm, B.A., Vrolijk, P.J., Pevear, D.R., Hall, C.M. and Solum, J.G. (2006) Fault dating in the Canadian Rocky Mountains; Evidence for late Cretaceous and early Eocene orogenic pulse. Geology, v.34, p.837-840. https://doi.org/10.1130/G22610.1
  32. Vrolijk, P. and van der Pluijm, B.A. (1999) Clay gouge. Journal of Structural Geology, v.21, p.1039-1048. https://doi.org/10.1016/S0191-8141(99)00103-0
  33. Williams, I.S. (1998) U-Th-Pb geochronology by ion microprobe. In: McKibben, M.A., Shanks, W.C.III., Ridley, W.L. (Eds.), Applications of microanalytical techniques to understanding mineralizing processes. Society of Economic Geologists, Socorro: Reviews in Economic Geology, v.7, p.1-35.
  34. Williams, I.S. and Claesson, S. (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes. Scandinavian Caledonides. II. Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy and Petrology, v.97, p.205-217. https://doi.org/10.1007/BF00371240
  35. Williams, I.S., Cho, D.L. and Kim, S.W. (2009) Geochronology, and geochemical and Nd-Sr isotopic characteristics of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: constraints on Triassic post-collisional magmatism. Lithos, v.107, p.239-256. https://doi.org/10.1016/j.lithos.2008.10.017
  36. Ylagan, R.F., Pevear, D.R. and Vrolijk, P.J. (2000) Discussion of "Extracting K-Ar ages from shales: a theoretical test". Clay Minerals, v.35 p.599-604. https://doi.org/10.1180/000985500546918

Cited by

  1. Geological characteristics of the Gangwondo Yanggu terra alba used for a major raw material of the Joseon white porcelain vol.52, pp.6, 2016, https://doi.org/10.14770/jgsk.2016.52.6.815
  2. Reactivated Timings of Yangsan Fault in the Sangcheon-ri Area, Korea vol.49, pp.2, 2016, https://doi.org/10.9719/EEG.2016.49.2.97