DOI QR코드

DOI QR Code

무주 승륭 아연광상의 광석광물과 생성환경

Ore Minerals and Genetic Environments of the Seungryung Zn Deposit, Muzu, Korea

  • 염태선 (공주대학교 지질환경과학과) ;
  • 신동복 (공주대학교 지질환경과학과)
  • Yeom, Taesun (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Shin, Dongbok (Department of Geoenvironmental Sciences, Kongju National University)
  • 투고 : 2014.11.24
  • 심사 : 2014.12.31
  • 발행 : 2015.02.28

초록

무주분지에 발달하는 승륭 아연광상 주변 지질은 선캠브리아기의 우백질 화강편마암, 백악기 쇄설암, 화산쇄설암과 관입암체로 구성되며, 광상은 편마암내 편리를 따라 협재하는 석회암을 교대한 열수교대광상으로 스카른화작용을 미약하게 받았다. 광화작용은 석류석, 휘석과 같은 스카른 광물이 형성되는 초기와 자철석, 섬아연석, 황동석, 자류철석, Pb-Ag-Bi-S계 등의 금속 광물이 정출되는 중기, 그리고 녹니석과 백철석 등의 변질 광물 및 저온 광물이 형성되는 후기로 구분된다. 섬아연석의 경우 염주(bead chains)와 분말(dusting)조직 등의 황동석 병변조직이 특징적으로 나타나며, Pb-Ag-Bi-S계 광물로는 헤이로브스카이트-에스키모아이트 고용체, 릴리아나이트-구스터바이트 고용체, 그리고 비킨자이트 등이 산출된다. 황화광물의 ${\delta}^{34}S$ 값은 황철석 3.4~4.1‰, 섬아연석 3.3~4.3‰, 황동석 4.0~4.3‰, 그리고 방연석 2.8‰로서 비교적 좁은 범위를 나타내며 광상을 형성시킨 황이 마그마에서 유래되었음을 시사한다. 또한 동위원소 지질온도계를 적용한 생성온도는 $346{\sim}431^{\circ}C$로서 비교적 고온에서 광화작용이 진행된 것으로 보인다. 섬아연석의 FeS 함량은 6.58~20.16 mole%(평균 16.58 mole%)로 비교적 높은 편이며, 국내 주요 스카른 연-아연 광상들과 유사하게 Mn이 Cd에 비해 부화되어 나타난다. 반면, 주변 설천광화대 금-은 광상은 Cd가 부화되어 천열수 금-은 광상과 유사한 특징을 나타내는데 이는 관계화성암을 중심으로 고온에서 승륭광상의 자철석, 섬아연석이 정출되고 이후 온도가 감소하고 광화유체의 조성이 변하면서 주변 지역의 금-은 광화작용이 진행된 것으로 여겨진다.

The geology of the Seungryung Zn deposit, located in the Muzu basin, consists of Precambrian leucocratic granitic gneiss, Cretaceous clastic rocks, pyroclastic rocks, and intrusive rocks. The deposit shows a weakly skarnized hydrothermal replacement ore developed along limestone bed in the gneiss. The mineralization can be divided into three stages: the early skarnization producing garnet and pyroxene, the main mineralization in the middle stage precipitating most metallic minerals such as magnetite, sphalerite, chalcopyrite, pyrrhotite, Pb-Ag-Bi-S system minerals, and the late stage for altered or low temperature minerals such as chlorite and marcasite. Pb-Ag-Bi-S system minerals include heyrovskite-eskimoite solid solution, lillianite-gustavite solid solution, and vikingite. Chalcopyrite diseases are quite common in sphalerite showing bead chains and dusting textures. The ${\delta}^{34}S$ values of sulfides minerals are concentrated within the narrow range of 3.4~4.1‰ for pyrite, 3.3~4.3‰ for sphalerite, 4.0~4.3‰ for chalcopyrite, and 2.8‰ for galena, suggesting that most sulfur is of igneous origin. Sulfur isotope geothermometry is calculated to be $346{\sim}431^{\circ}C$, implying that the mineralization occurred at relatively high temperature. FeS contents of sphalerite are relatively high in the range of 6.58~20.16 mole% (avg. 16.58 mole%) with the enrichment of Mn compared to Cd, similarly to representative skarn Pb-Zn deposits in South Korea. On the contrary, sphalerite from Au-Ag deposits in the Seolcheon mineralized zone around the Seungryung deposit is enriched in Cd, showing similar feature like representative epithermal Au-Ag deposits. This suggests that around the related igneous rocks, magnetite and sphalerite were produced at high temperature in the Seungryung deposit, and with decreasing temperature and compositional change of mineralizing fluids, Au-Ag mineralization proceeded in the Seolcheon mineralized zone.

키워드

참고문헌

  1. Bae, Y.B. (1992) A study on the Bug-ap orebody in the Shinyemi mine. Jour. Korean Earth Sci. Soc., v.13, p.127-135.
  2. Barton, P.B. (1978) Some ore textures involving sphalerite from the Furutobe mine, Akita Prefecture, Japan. Mining Geol., v.28, p.293-300.
  3. Barton, P.B. and Bethke, P.M. (1987) Chalcopyrite disease in sphalerite: Pathology and epidemiology. Am. Mineralogist, v.72, p.451-467.
  4. Chakrabarti, A.K. (1967) On the trace element geochemistry of Zawar sulphides and its relation to metallogenesis. Canadian Mineralogist, v.9, p.258-262.
  5. Choi, B.K., Choi, S.G., Seo, J.U., Yoo, I.K., Kang, H.S. and Koo, M.H. (2010) Mineralogical and geochemical characteristics of the Wolgok-Seongok orebodies in the Gagok skarn deposit : their genetic implications. Econ. Environ. Geol., v.43, p.477-490.
  6. Choi, S.G. (1993) Compositional variations of sphalerites and their genetic characteristics from gold and/or silver deposits in central Korea. Econ. Environ. Geol., v.26, p.135-144.
  7. Choi, S.G., Choi, B.K., Ahn, Y.H. and Kim, T.H. (2009) Re-evaluation of genetic environments of zinc-lead deposits to predict hidden skarn orebody. Econ. Environ. Geol., v.29, p.1-9.
  8. Choi, S.G., Chung, J.I. and Imai, N. (1986) Compositional variation of arsenopyrites in arsenic and polymetallic ores from the Ulsan mine, Republic of Korea, and their application to a geothermometer. Jour. Korean Inst. Mining Geol., v.19, p.199-218.
  9. Choi, S.G., Pak, S.J., Lee, P.K. and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. Econ Environ. Geol., v.37, p.1-19.
  10. Chon, H.T. and Shimazaki H. (1986) Iron, manganese and cadmium contents of sphalerites and their genetical implications to hydrothermal metallic ore deposits in Korea. Jour. Korean Inst. Mining Geol., v.19, p.139-149.
  11. Faure, G. (1986) Principles of isotope geology. 2nd ed., John Wiley & Sons, p.589.
  12. Fleischer, M. (1955) Minor elements in some sulfide minerals. Economic Geology, v.50, p.970-1024.
  13. Im, H.K., Shin, D.B. and Heo, S.H. (2014) Occurrence and geochemical characteristics of the Haenam Pb-Zn skarn deposit. Econ. Environ Geol, v.47, p.363-379. https://doi.org/10.9719/EEG.2014.47.4.363
  14. Kim, C.J. and Park, H.I. (1984) Mineral paragenesis and fluid inclusions of Geoje copper ore deposits. Jour. Korean Inst. Mining Geol., v.17, p.245-258.
  15. Kim, K.H. and Nakai, N. (1980) Sulfur isotope composition and isotopic temperatures of some base metal ore deposits, South Korea. Jour. Geol. Soc. Korea, v.16, p.124-134.
  16. Kim, K.H. and Nakai, N. (1982) Sulfur isotope composition and isotopic temperatures of the Shinyemi lead and zinc ore deposits, western Taebaegsan metallogenic belt, Korea. Jour. Korean Inst. Mining Geol., v.15, p.155-166.
  17. Kim, K.H., Nakai, N. and Kim, O.J. (1981) A mineralogical study of the skarn minerals from the Shinyemi lead-zinc ore deposits, Korea. Jour. Korean Inst. Mining Geol., v.14, p.167-182.
  18. Kim, M.S., Yun, S.H. and Koh, J.S. (2008) Petrological study on the Seolcheon tuff in the Yeongnam massif, Muju. Jour. Geol. Soc. Korea., v.44, p.199-217.
  19. Kim, M.Y. and Shin, H.J. (1989) Chemical composition of sphalerite relating to mineralization at the Tongyoung mine, Korea.. Jour. Korean Inst. Mining Geol., v.22, p.103-115.
  20. KMPC(Korea Mining Promotion Corporation) (1982) Report on drilling of ore deposit. v.5, p.341-448.
  21. KMPC(Korea Mining Promotion Corporation) (1983) Report on drilling of ore deposit. v.6, p.239-277.
  22. KMPC(Korea Mining Promotion Corporation) (1990) Ore deposits in Korea. v.12, p.153-154.
  23. Kojima, S. and Sugaki, A. (1985) Phase relations in the central portion of the Cu-Fe-Zn-S system between 500 and 300 under hydrothermal conditions. Economic Geology, v.80, p.158-171. https://doi.org/10.2113/gsecongeo.80.1.158
  24. KORES(Korea Resources Corporation) (2013) Bulletin of mining 2012. 551p.
  25. Lee, C.H. and Park, H.I. (1992) Mode of occurrences and depositional conditions of Sb, Bi sulfosalt minerals from south ore deposits, Dunjeon gold mine. Jour. Korean Inst. Mining Geol., v.25, p.17-25.
  26. Lee, C.H. and Park, H.I. (1995) Some Pb-Bi-Sb-S minerals from the Dunjeon gold mine, northern Taebaegsan mining district, Korea. Resource Geol., v.45, p.323-329.
  27. Lee, H.K., Yoo, B.C. and Kim, S.J. (1992) Mineralogy and ore genesis of the Daebong gold-silver deposits, Chungnam, Korea. Jour. Korean Inst. Mining Geol., v.25, p.297-316.
  28. Lee, H.K., Lee, C.H. and Song, S.H. (1996) Ore minerals and mineralization conditions of magnetite deposits in the Janggun mine, Korea. Econ. Environ. Geol, v.29, p.1-9.
  29. Lee, M.S. (1985) Sulfur and carbon isotope studies of principal metallic deposits in the metallogenic province of the Taebaeg Mt. region, Korea. Jour. Korean Inst. Mining Geol., v.18, p.247-251.
  30. Lim, O., Yu, J.H., Koh, S.M. and Heo, C.H. (2013) Mineralogy and chemical compositions of Dangdu Pb-Zn deposit. Econ. Environ. Geol., v.46, p.123-140. https://doi.org/10.9719/EEG.2013.46.2.123
  31. Mariko, T. and Yang, D.Y. (1993) Magnesian skarn-type magnetite deposits of the Shinyemi mine, Korea. In Maurice Y.N. (ed.) Proceeding of the 8th IAGOD Symposium, Ottawa, Canada, p.255-269.
  32. Mizuta, T., Shimazaki, H., Kaneda, H. and Lee, M.S. (1984) Compositional variation of sphalerites from some Au-Ag ore deposits in South Korea. In Tsusue, A., (ed.), Granite provinces and associated ore deposits in South Korea. p.127-152.
  33. Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur and carbon. In Barnes, H.L. (eds.), Geochemistry of Hydrothermal Ore Deposits. Jhon Wiley and Sons, p.509-567.
  34. Park, H.I., Woo, Y.K. and Hwang, J. (1988) Polymetallic mineralizatioin in the Eunchi silver mine. Jour. Geol. Soc. Korea., v.24, p.431-449.
  35. Park, J.W. and Lee, Y.I. (1997) Lithostratigraphic revision of the Cretaceous Muju Basin, Korea. Jour. Geol. Soc. Korea., v.33, p.65-77.
  36. Park, J.W. and Lee, Y.I. (2000) Provenance of Cretaceous conglomerates(the Gilwangri Formation) of the Muju Basin in Mt. Jeogsang area, Korea. Jour. Geol. Soc. Korea, v.36, p.355-370.
  37. Seal II, R.R. (2006) Sulfur isotope geochemistry of sulfide minerals. In: Vaughan, D.J. (ed.), Sulfide mineralogy and geochemistry. Reviews in Mineralogy & Geochemistry. Mineral. Soc. Am., v.61, p.633-677.
  38. Seo, J.U., Choi, S.G., Kim, C.S., Park, J.W., Yoo, I.K. and Kim, N.H. (2007) The skarnification and Fe-Mo mineralization at lower part of western Shinyemi ore body in Taeback area. Jour. Mineral. Soc. Korea, v.20, p.35-46.
  39. Shin, D.B. (2006) Occurrence and mineral chemistry of Pb-Ag-Bi-S system minerals in the Nakdong As-Bi deposits, South Korea. Econ. Environ. Geol., v.39, p.643-651.
  40. Shin, D.B., Lee, C.H. and Lee, K.S. (2005) Occurrence and mineral chemistry of bismuth sulfide-tellurideselenide solid solutions (ingodite, Joseite, and unnamed phase) in the Nakdong deposit, South Korea. Neues Jahrbuch fur Mineralogie, v.181, p.293-302. https://doi.org/10.1127/0077-7757/2005/0023
  41. So, C.S., Yun, S.T., Choi, S.H., Kim, S.H. and Kim, M.Y. (1992) Cretaceous epithermal Au-Ag mineralization in the Muju-Yeongam district (Sulcheon mineralized area), Republic of Korea. Jour. Korean Inst. Mining Geol., v.25, p.115-131.
  42. Ueda, A. and Krouse, H.R. (1986) Direct conversion of sulphide and sulphate minerals to $SO_2$ for isotope analyses. Geochem. J., v.20, p.209-212. https://doi.org/10.2343/geochemj.20.209
  43. Yang, C.M. and Choi, J.B. (2010) Occurrence of the Pb-Zn skarn deposits in Gukjeon mine, Korea. Jour. Miner. Soc. Korea., v.23, p.413-428.
  44. Yeom, T.S. (2014) Geology and ore mineralization of the Seungryung Zn deposit, Muzu, Korea. Master thesis, Kongju National University, 74p.
  45. Yoo, B.C., Lee, H.K. and Choi, S.G. (2002) Stable isotope, Fluid Inclusion and Mineralogical Studies of the Samkwang Gold-Silver Deposits, Republic of Korea. Econ. Environ. Geol., v.35, p.299-316.
  46. Youn, S.T. (2008) Chalcopyrite disease in sphalerite: A case of the Soowang ore deposits in Muju, Republic of Korea. Jour. Korean Earth Sci. Soc., v.29, p.551-558. https://doi.org/10.5467/JKESS.2008.29.7.551
  47. Youn, S.T. and Park, H.I. (1991) Gold and silver mineralization in the Yonghwa mine. Jour. Korean Inst. Mining Geol., v.24 p.107-129.
  48. Youn, S.T. and Park, H.I. (1993) Gold and silver mineralization in the Weolseong mine. Jour. Korean Earth Sci. Soc., v.14, p.263-273.
  49. Youn, S.T. and Park, H.I. (1997) Stable isotope study of gold-silver deposits in the Muju-Yongdong area. Jour. Korean Earth Sci. Soc., v.18, p.60-69.
  50. Youn, S.T. and Park, H.I. (2004) Gold and silver mineralization of the Soowang ore deposits in Muju, Korea. Jour. Korean Earth Sci. Soc., v.25, p.484-494.

피인용 문헌

  1. Occurence of Zn-Pb Deposits in Danjang-Myeon, Milyang Area vol.28, pp.3, 2015, https://doi.org/10.9727/jmsk.2015.28.3.279