References
- Kevin Brown, Reflections on Relativity, lulu.com, September 22, 2014.
- Hans van den Ende, Huygens's Legacy, The Golden Age of the Pendulum Clock, Fromanteel Ldt., 2004.
- Leonhard Euler, Methodus Inveniendi Lineas Curvas Maximi Minive Proprietate Gaudentes, Bousquet, Lausanne & Geneva, 1744.
- M. Gardner, The Sixth Book of Mathematical Games from Scientific American, Chicago, IL: University of Chicago Press, 1984.
- C. I. Gerhardt, Uber die vier Briefe von Leibniz, die Samuel Konig in dem Appel au public, Leide MDCCLIII, veroffentlicht hat, Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften, I, 1898.
- N. P. Johnson, The brachistochrone problem, The College Mathematics Journal 35 (2004), 192-197. https://doi.org/10.2307/4146894
- V. J. Katz, A History of Mathematics: An Introduction, 2nd ed., Addison Wesley, 1998.
- P. L. M. de Maupertuis, Accord de differentes lois de la nature qui avaient jusqu'ici paru incompatibles, Mem. As. Sc. Paris, 1744.
- J. P. Phillips, Brachistochrone, Tautochrone, Cycloid-Apple of Discord, Math. Teacher 60 (1967), 506-508.
- P. Sanders, Charles de Bovelles's Treatise on the Regular Polyhedra (Paris, 1511), Annals of Science 41 (1984), 513-566. https://doi.org/10.1080/00033798400200401
- David Eugene Smith, A Source Book in Mathematics, Dover books, 1984.
- D. J. Struik, ed., A Source Book in Mathematics, 1200-1800, Harvard Univ. Press, 1969.
- S. Wagon, Mathematica in Action, New York: W. H. Freeman, 1991.
- Evelyn Walker, A Study of Roberval's Traite des Indivisibles, Columbia University, 1932.
- D. Wells, The Penguin Dictionary of Curious and Interesting Geometry, London: Penguin, 1991.
- E. A. Whitman, Some historical notes on the cycloid, The American Mathematical Monthly 50(5) (1943), 309-315. https://doi.org/10.2307/2302830
- Wolfgang Yourgrau, Stanley Mandelstam, Variational Principles in Dynamics and Quantum Theory, Courier Corporation, 1979.