DOI QR코드

DOI QR Code

Improvement of Energy Efficiency of Plants Factory by Arranging Air Circulation Fan and Air Flow Control Based on CFD

CFD 기반의 순환 팬 배치 및 유속조절에 의한 식물공장의 에너지 효율 향상

  • Moon, Seung-Mi (Department of Multimedia Engineering, Kongju National University) ;
  • Kwon, Sook-Youn (Green Energy Technology Research Center, Kongju National University) ;
  • Lim, Jae-Hyun (Department of Multimedia Engineering, Kongju National University)
  • Received : 2014.08.31
  • Accepted : 2014.12.26
  • Published : 2015.02.28

Abstract

As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.

농업과 IT기술 융합이 가속화됨에 따라 식물공장 내 작물의 품질 및 생산성을 향상시키기 위한 연구가 활발히 진행 중이다. 식물공장의 생산성을 최대화하기 위해서는 먼저 시설 내부의 특성을 고려하여 생육에 적합한 열 환경과 공기의 흐름을 제공하기 위한 고도의 생장환경 관리기술이 필요하다. 현재 운영되고 있는 식물공장은 특화된 공기유동장치의 설계 및 운영기술이 확립되지 않아 온도 기류 편차로 인한 불균일한 품질의 작물 생산, 재배기간 연장에 따른 에너지 소비 등의 문제점을 내포하고 있다. 이를 해결하기 위해서는 식물공장 시설의 설계 단계에서 전산유체역학 시뮬레이션을 이용한 공기유동장치의 배치 및 운영기술에 대한 최적화 과정이 선행되어야 한다. 본 연구에서는 CFD(Computational Fluid Dynamics) 시뮬레이션을 이용한 순환 팬의 적정 배치 및 유속을 파악하여 식물공장 시설 내부의 각 지점별 온도 편차를 최소화하고 에너지소비를 절감한다. 시뮬레이션 조건은 순환 팬의 설치 위치 및 수량 그리고 유속변화에 따라 총 12가지의 Case로 구분하였으며 해석을 위한 경계 조건 변수는 동일하게 설정하였다. 시뮬레이션 결과, 2set의 순환 팬을 식물재배기 상단에 부착한 Case D의 제어 조건이 설정온도에 부합하는 296.33K의 평균온도를 유지하면서 식물생육에 적합한 0.51m/s의 기류분포를 보였다. 또한, 순환 팬의 유속을 변화시킨 결과, 출구 유속을 2.09/s로 설정한 Case D-3이 에너지 효율 측면에서 가장 우수한 결과를 보였다.

Keywords

References

  1. J. W. Lee, J. H. Hwang, Y. Hyun, "Trends and Future Direction of Agricultural ICT Convergence Technology", Journal of The Korean Institute of Communication Sciences, Vol. 31, no.5, pp.54-60, May. 2014. http://www.dbpia.co.kr/Article/3459581
  2. Woo-Soo Jeong, Sa-Hyuk Kim, "An Analysis of the Economic Effects on the Project to Construct Smart Network", Journal of Internet Computing and Services(JICS), Vol. 12, no.4, pp.61-71, Aug. 2011. http://www.dbpia.co.kr/Article/1510108
  3. Woong-Sik Kim, Jong-Ki Kim, "The Implementation of Remote Machine Health Monitoring System using Internet", Journal of Internet Computing and Services(JICS), Vol. 14, no.6, pp.19-23, Dec. 2013. http://dx.doi.org/10.7472/jksii.2013.14.6.19
  4. Bup-Ki Min, Yongjin Seo, Hyeon Soo Kim, Seunghak Kuk, Yonghwan Jung, Chumsu Kim, "Dynamic Reconfigurable Integrated Management and Monitoring System for Heterogeneous Distributed Environments", Journal of Internet Computing and Services(JICS), Vol. 13, no.6, pp.64-74, Dec. 2012. http://dx.doi.org/10.7472/jksii.2012.13.6.63
  5. Jae Whune Kim, "Trend and direction for plant factory system", J Plant Biotechnol, Vol. 37, no.4, pp.442-455, 2010. http://dx.doi.org/10.5010/JPB.2010.37.4.442
  6. Dong-Yoon Park, Seong-Teak Jang, Seong-Ju Chang, "Numerical Study on the Thermal Environment of a Natural Light Based Multi-layered Plant Factory", Journal of the Korea institute of ecological architecture and environment, Vol. 13, no.5, pp.43-50, Oct. 2013. http://dx.doi.org/10.12813/kieae.2013.13.5.043
  7. G. I. Lee, J. K. Kwon, D. E. Kim, "Forced Ventilation Characteristic of the Vertical Plant Factory using CFD Simulation", Vol. 18, no.1, pp.221-222, 2013. http://www.riss.kr/link?id=A99829723
  8. Sang-Woon Nam, Young-Shik Kim, "Analysis on the Uniformity of Temperature and Humidity According to Environment Control in Tomato Greenhouses", Protected Horticulture and Plant Factory, Vol. 18, no.3, pp.215-224, Sep. 2009. http://www.dbpia.co.kr/Article/1100044
  9. Boulard. T, Papadakis. G, Kittas. C, Mermier. M, "Air flow and associated sensible heat exchanges in a naturally ventilated greenhouse", Agricultural and forest meteorology, Vol. 88, no. 1-4, pp.111-119, 1997. http://dx.doi.org/10.1016/S0168-1923(97)00043-9
  10. Hankyoung KIM, "Design of Test-Effort Estimation Model", Journal of Internet Computing and Services(JICS), Vol. 14, no.1, pp.23-30, Feb. 2013. http://dx.doi.org/10.7472/jksii.2013.14.23
  11. Yun N.K., "Design and Analysis Technique for Greenhouse Environment Using CED Simulation -Design and Analysis for Natural Ventilation-", Controlled Horticulture Research Vol. 15, no.1, pp.20-26, Sep. 2002. http://www.dbpia.co.kr/Article/880544
  12. In-Bok Lee, Nam-Kyu Yun, Thierry Boulard, Jean Claude Roy, Sung-Hyoun Lee, Gyoeng-Won Kim, Se-Woon Hong, Si-Heung Sung, "Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (2) Development of CFD Model to Study the Effect of Tomato Plants on Internal Climate of Greenhouse -", Protected Horticulture and Plant Factory, Vol. 15, no.4, pp.296-305, Dec. 2006. http://www.dbpia.co.kr/Article/916217
  13. H. K. Myeong, "Introduction to CFD", Munundang, 2008.
  14. Kyung-jin Yim, Hong-jip Kim, Sang-min Lee, Kyoung-Sub Park, "CFD Analysis on the Flow Uniformity of a $CO_2$ Enrichment System", Protected Horticulture and Plant Factory, Vol. 22, no.2, pp.123-130, Jun. 2013. http://dx.doi.org/10.12791/KSBEC.2013.22.2.123
  15. In-Ho Yu, Myeong-Whan Cho, Si-Young Lee, Hee-Chun, In-Bok Lee, "Effects of Circulation Fans on Uniformity of Meteorological Factors in Warm Air Heated Greenhouse", Protected Horticulture and Plant Factory, Vol. 16, no.4, pp.291-296, Dec. 2007. http://www.dbpia.co.kr/Article/917141
  16. You Heo, So-Hee Kim, Eun-Gi Park, Beung-Gu Son, Young-Whan Choi, Yong-Jae Lee, Young-Hoon Park, Jeong-Min Suh, Jae-Hwan Cho, Chang-Oh Hong, Sang-Gye Lee, Jum-Soon Kang, "The Influence of Abnormally High Temperatures on Growth and Yield of Hot Pepper(Capsicum annum L.)", Journal of Agriculture & Life Sciences, Vol. 47, no.2, pp.9-15, 2013. http://db.koreascholar.com/article.aspx?code=280266 https://doi.org/10.14397/jals.2013.47.6.9