DOI QR코드

DOI QR Code

Experiment and Evaluation of Mist Diffusion from Water Tube for Blasting Dust Control in accordance with the Explosives Position

폭약 기폭위치에 따른 발파 분진제어용 워터튜브 주입수의 분무확산 실험 및 평가

  • 양형식 (전남대학교 에너지자원공학과) ;
  • 고영훈 (전남대학교 대학원 에너지자원공학과) ;
  • 김정규 (전남대학교 대학원 에너지자원공학과) ;
  • 노유송 (전남대학교 대학원 에너지자원공학과) ;
  • 박훈 ((주)코리아카코) ;
  • 조상호 (전북대학교 자원.에너지공학과)
  • Received : 2015.01.22
  • Accepted : 2015.02.11
  • Published : 2015.02.28

Abstract

A water tube with detonating cord was devised to control the blast dust. Water diffusion experiments with different detonating cord positions were conducted during the series of experiments to optimize the design parameters of the tube. Images from high speed camera were analyzed to evaluate the results. AUTODYN program was adopted to simulate the diffusion process of water and compared with the images. Diffusion of water shows cross flow in case of external charge while the internal case shows radial flow. A bubble ring was formed during the numerical analysis of internal charge case as occurred in underwater blast. An additional bubble ring was formed by the reflection pressure from the ground. And the Weber number was determined as sufficient for spray atomization performance of the water tube.

발파분진을 제어하기 위하여 도폭선을 결합한 양수튜브를 고안하였다. 최적설계를 위한 실험의 일환으로 도폭선 기폭위치에 따른 물의 확산을 비교 실험하였다. 실험결과를 평가하기 위하여 고속카메라로 촬영하여 영상을 이미지 분석 하였고, 워터튜브의 분무확산 과정을 묘사하기 위해 AUTODYN 프로그램을 이용하여 해석한 결과를 분무초기거동 실험영상과 비교하였다. 외부기폭의 경우 분무거동이 교차유동을 나타냈고, 내부기폭의 경우 방사형 전파유동을 나타냈다. 수치해석 결과 워터튜브 내부기폭의 경우 수중폭발에서와 같은 내부 Bubble Ring이 발생하였고, 지반에의 반사압 영향에 의해 추가적인 Bubble Ring이 형성되었다. 또한, 워터튜브의 분무미립화 성능을 Weber 수를 통해 평가하였고, 워터튜브의 충분한 미립화 성능을 확인할 수 있었다.

Keywords

References

  1. Gardner, D. R., 1990, Near-field dispersal modeling for liquid fuel-air-explosive, DE91000079 (SAND-90-0686).
  2. Geers, T. L. and Hunter, L. S, 2002, An integrated waveeffects model for an underwater explosion bubble, Journal of Acoustical Society of America, 111, 1548-1601.
  3. Han, Z, 2009, Research and application of blasting water mist on urban housing demolition, Masters Thesis, Anhui University, 35.
  4. Li, L., Ren, X., Lu, X., Yan, X, 2010, On the characteristics of liquid explosive dispersing flow, World Academy of Science, Engineering and Technology, 4, 526-530.
  5. Liu, F, 2011, Research on blasting water mist reducing dust resulting from blasting demolition, Doctoral dation, Anhui University.
  6. Li Z, 2011, Experimental study of explosive water mist extinguishing fire, Proc Engineering 11, 258-267. https://doi.org/10.1016/j.proeng.2011.04.655
  7. McDonell, I, 2009, Dust control on longwall faces by fine mist (Atomising) sprays - can they really work, The AusIMM Illawarra Branch 2009 Coal Operators' Conference, 248-250.
  8. Ministry of Land, Infrastructure and Transport, 2012, Development of advanced demolition technologies for eco-friendly urban regeneration, 47-67.
  9. Pilch, M. Erdman, C. A, 1987, Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid Drop, Int. J. Multiphase Flow, 13, 741. https://doi.org/10.1016/0301-9322(87)90063-2
  10. Stefanski, K, 2009, Explosive formation and spreading of water-spray cloud - experimental development and model analyses, Central European Journal of Energetic Materials, 6.3-4, 291-302.
  11. Swisdak, M. M. Jr, 1978, Explosion effects and properities; Part II-Explosion effects in water, NSWC/WOL TR 76-116.