DOI QR코드

DOI QR Code

Numerical Analysis of the Depression Effect of Hybrid Breaker on the Run Up Height due to Tsunami based on the Modified Leading Depression N (LDN) Wave Generation Technique

Leading Depression N (LDN) Wave 조파기법에 기초한 Hybrid Breaker의 지진해일 처오름 저감효과 수치해석

  • Cho, Yong Jun (Department of Civil Engineering, University of Seoul) ;
  • Na, Dong Gyu (Department of Civil Engineering, University of Seoul)
  • Received : 2015.01.05
  • Accepted : 2015.02.23
  • Published : 2015.02.28

Abstract

Past study of tsunami heavily relied on the numerical modelling using 2D Boussinesq Eq. and Solitary wave. Lately, based on the fact that numerically simulated run up heights based on solitary wave are somewhat smaller than the measured one, Leading Depression N (LDN) Wave has been elaborated, which can account the advancement of a shore line before tsunami strikes a shore. Thereafter it is reported that more accurate simulation can be possible once LDN is deployed. On the other hand, there were numerous reports indicating that stable LDN wave can't be sustained in the hydraulic model test. These conflicts between the hydraulic model tests and numerical results have their roots on the assumption made in the derivation of Boussinesq type wave model such as that wave nonlinearity is equally balanced with wave dispersiveness. Hence, in the numerical simulation based on the Boussinesq type wave model, wave dispersiveness is inevitably underestimated, especially in deep water. Based on this rationale, we developed the modified methodology for the generation of stable LDN wave in the 3D numerical wave flume, and proceeded to numerically analyze the depression effect of Hybrid Breaker on the run up height due to tsunami using the Navier Stoke Equation. The verification of newly proposed wave model in this study was carried out using the run up height from the hydraulic model test. It was shown that Hybrid Breaker consisting of three water chamber and slope at its front can reduce 13% of run up height for H = 5m, and 10% of run up height for H = 6m.

지진해일에 대한 기존의 연구는 이차원 Boussinesq 모형과 Solitary wave에 기초한 수치해석이 그 주류를 이룬다. 최근 Solitary wave에 의한 처오름 높이가 관측치를 하회한다는 인식에 기초하여 지진해일 내습전 해안선이 전진하는 현상의 모의가 가능한 Leading Depression N (LDN) Wave가 제시되었으며 이에 기초하는 경우 보다 정확한 모의가 가능한 것으로 보고된 바 있다. 이러한 성과에도 불구하고 수리모형 실험의 경우 안정적인 Leading Depression N (LDN) Wave의 구현에 상당한 어려움을 겪어왔다. 이러한 이차원 Boussinesq 모형과 삼차원 수리모형 실험에서의 상충된 결과는 이차원 Boussinesq 계열 파랑 모형 유도과정에서 수행되는 파랑의 비선형성과 분산성이 균형을 이룬다는 가정과 이로 인해 다소 과소하게 평가된 분산성에 기인하는 것으로 판단된다. 이러한 인식에 기초하여 본고에서는 삼차원 수치수조에서 비교적 안정적인 LDN 파형의 조파가 가능한 수정 조파기법과 Navier Stoke 파랑모형에 기초하여 Hybrid Breaker의 지진해일에 의한 처오름 저감효과를 수치 해석하였다. 파랑모형의 검증은 불규칙 파랑을 대상으로 기 수행된 수리모형 실험결과를 토대로 진행되었으며, 그 결과 비교적 근접한 처오름 높이를 얻을 수 있었다. 세 개의 유수실과 전면 경사면으로 구성된 Hybrid Breaker의 경우 일반 경사제에 비해 H = 5m의 경우 약 13%, H = 6 m의 경우 10%정도의 처오름 저감 효과를 지니는 것으로 모의되었다.

Keywords

References

  1. Aida, I. (1984). An estimate of tsunamis generated by volcanic eruptions - the 1741 eruption of Oshima-Ohshima, Hokkaido. Bull. Earthq. Res. Inst., 59, 519-531.
  2. Biesel, F. (1951). Les Apparails Generateurs de Houle en Laboratorie. La Houille Blanche, Vol.6, nos. 2, 4 et 5.
  3. Cho, Y.J., and Kim, G. S. (2004). Internal generation of waves in fully elliptic modified mild slope equation using source function method under FEM computational environment. Coastal Engineering Journal, 46(4), 425-440. https://doi.org/10.1142/S0578563404001129
  4. Cho, Y.S., Ahn, Y.C., and In, T.H. (2002). Calculation of run-up heights for obliquely incident tsunami. Proceedings of KSCE Conference and Civil Expo 2002, 3252-3255
  5. Choi, B.H., Lee, H.J. (1993). Evaluation of 1983 East Sea tsunami. Journal of Civil Engineering, KSCE, 13(3), 207-219.
  6. Frigaard, P., and Anderson, T. L. (2010). Technical Background Material for the Wave Generation Software AwaSys 5. DCE Technical Reports No. 64, Aalborg University.
  7. Goring, D. G. (1979). Tsunami: The propagation of long waves onto a shelf. Report no. KH-R-12-38, W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, California.
  8. Gramstad, O., and Stiassnie, M. (2013). Phase-averaged equation for water waves. J. Fluid Mech., Vol. 718, 280-303. https://doi.org/10.1017/jfm.2012.609
  9. Hunt, I. A. Jr. (1959). Design of sea walls and breakwaters. Journal of the Waterways and Harbors Division. Proc. ASCE, Vol.85 WW3, USA.
  10. Lee, H.J. (1998). Evaluation of tsunami risk along the east coast of Korean peninsula. NIDP-98-06, Technical report, Ministry of government administration and home affairs, National disaster prevention research institute.
  11. Lee, W.H.K., Shin, T.C., Kuo, K.W., Chen, K.C., and Wu, C. F. (2001). CWB Free-Field Strong-Motion Data from the 21 September Chi-Chi, Taiwan, Earthquake. Bulletin of the seismological society of America, 91, 5, 1370-1376 https://doi.org/10.1785/0120000744
  12. Lin, I. (1985). Report of the Synthetic Investigation of South china Sea. China Sei. Press, Beijing, 432.
  13. Lin, I., Tung, C. C. (1986). Tsunami Hazard. J. Eng. Mech., 112(9), 874-887. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:9(874)
  14. Madsen, P. A., and Schffer, H.A. (2010). Analytical solutions for tsunami run-up on a plane beach: single waves, N-waves and transient waves. J. Fluid Mech, 645, 27-57. https://doi.org/10.1017/S0022112009992485
  15. Manshinha, L., and Smylie, D. E. (1971). The displacement field of inclined faults. Bulletin of the Seismological Society of America, 61(5), 1433-1440.
  16. Mohammadi, S. M. (2009). Laboratory generation and physics of propagation of solitaty waves and water surgace depressions. PhD Dissertation, Clemson University 113.
  17. Ramsden, J. D. (1993). Tsunamis-Forces on a vertical wall caused by long waves, bores, and surges on a dry bed. Rep. No. KH-R-54, W. M. Keck Lab. of Hydr. and Water Resour., Calif. Inst. of Technol., Pasadena, Calif.
  18. Synolakis, C. E. (1986). The runup of long waves. Ph.D Thesis, California Institute of Technology, Pasadena.
  19. Synolakis, C. E. (1990). The generation of long waves in the laboratory. J. Water Harbour Coastal Engineering, 116, 252-266. https://doi.org/10.1061/(ASCE)0733-950X(1990)116:2(252)
  20. Tadepalli, S., and Synolakis, C. E. (1994). The Run-Up of N-Waves on Sloping Beaches. Proceedings: Mathematical and Physical Sciences, 445(1923), 99-112.
  21. Tadepalli, S., and Synolakis, C. E. (1996). Model for the leading waves of tsunamis. Phys. Rev. Lett. 77: 2141-2144. https://doi.org/10.1103/PhysRevLett.77.2141
  22. Van der Meer, J. W., and Janssen, J. P. F. M. (1994). Wave run-up and wave overtopping at dikes and revetments. Publication No. 485, Delft Hydraulics, The Netherlands.
  23. Yoon, S.B. (2002). Propagation of distant tsunamis over slowly varying topography. J. of Geographical Research, 107(C10).
  24. Yoon, S.B., Lim, C.H., Cho, Y.S., and Choi, C.S. (2002). Accuracy Evaluation of Dispersion-Correction Finite Difference Model for Tsunami Propagation. Journal of Korean Society of Coastal and Ocean Engineers, 14(2), 116-127
  25. Zanuttigh. B., Van der Meer, J.W. (2006). Wave reflection from coastal structures. Proc. XXX Int. Conf. Coast. Eng., Vol. 5, 4337-4349.
  26. Zhao, X., Wang, B., and Liu, H. (2012). Characteristics of tsunami motion and energy budget during runup and rundown processes over a plane beach. Physics of fluids 24, 062107. https://doi.org/10.1063/1.4729597

Cited by

  1. Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On vol.30, pp.6, 2018, https://doi.org/10.9765/KSCOE.2018.30.6.306