DOI QR코드

DOI QR Code

기계적 합금화하여 제조한 Fe-5Y2O3 합금분말의 나노산화물 석출거동

A Precipitation Behavior of Nano-Oxide Particles in Mechanically Alloyed Fe-5Y2O3 Powders

  • 김가언 (한양대학교 신소재공학과) ;
  • 노상훈 (한국원자력연구원 원자력소재개발부) ;
  • 최지은 (한국원자력연구원 원자력소재개발부) ;
  • 김영도 (한양대학교 신소재공학과) ;
  • 김태규 (한국원자력연구원 원자력소재개발부)
  • Kim, Ga Eon (Development of Materials Science and Engineering, Hanyang University) ;
  • Noh, Sanghoon (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Choi, Ji Eun (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Young Do (Development of Materials Science and Engineering, Hanyang University) ;
  • Kim, Tae Kyu (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
  • 투고 : 2015.02.11
  • 심사 : 2015.02.25
  • 발행 : 2015.02.28

초록

A precipitation behavior of nano-oxide particle in Fe-$5Y_2O_3$ alloy powders is studied. The mechanically alloyed Fe-$5Y_2O_3$ powders are pressed at $750^{\circ}C$ for 1h, $850^{\circ}C$ for 1h and $1150^{\circ}C$ for 1h, respectively. The results of Xray diffraction pattern analysis indicate that the $Y_2O_3$ diffraction peak disappear after mechanically alloying process, but $Y_2O_3$ and $YFe_2O_4$ complex oxide precipitates peak are observed in the powders pressed at $1150^{\circ}C$. The differential scanning calorimetry study results reveal that the formation of precipitates occur at around $1054^{\circ}C$. Based on the transmission electron microscopy analysis result, the oxide particles with a composition of Y-Fe-O are found in the Fe-$5Y_2O_3$ alloy powders pressed at 1150oC. It is thus conclude that the mechanically alloyed Fe-$5Y_2O_3$ powders have no precipitates and the oxide particles in the powders are formed by a high temperature heat-treatment.

키워드

참고문헌

  1. T. K. Kim and S. H. Kim: J. Nucl. Mater., 411 (2011) 208. https://doi.org/10.1016/j.jnucmat.2011.02.017
  2. T. K. Kim, J. H. Baek, C. H Han, S. H. Kim and C. B. Lee: J. Nucl. Mater., 389 (2009) 359. https://doi.org/10.1016/j.jnucmat.2009.01.302
  3. S. Saroja, A. Dasgupta, R. Divakar, S. Raju, E. Mohandas, M. Vijalakshmi and K. B. S. Rao: J. Nucl. Mater., 409 (2011) 131. https://doi.org/10.1016/j.jnucmat.2010.09.022
  4. H. J. Jin, S. H. Kang and T. K. Kim: J. Korean Powder Metall. Inst., 21 (2014) 271 (Korean). https://doi.org/10.4150/KPMI.2014.21.4.271
  5. T. Okuda and M. Fujiwara: J. Mater. Sci. Lett., 14 (1995) 1600. https://doi.org/10.1007/BF00455428
  6. R. Vijay, M. Nagini, S. S. Sarma, M. Ramakrishna, A. V. Reddy and G. Sundararajan: Metall. Mater. Trans. A, 45A (2014) 777.
  7. S. W. Kim, T. Shobu, S. Ohtsuka, T. Kaito, M. Inoue and M. Ohnuma: Mater. Trans., 50 (2009) 917. https://doi.org/10.2320/matertrans.MER2008439
  8. S. Noh, J. E. Choi, B. K. Choi, S. H. Kang and T. K. Kim: Korean J. Met. Mater., 52 (2014) 705 (Korean). https://doi.org/10.3365/KJMM.2014.52.9.705
  9. Y. Kimura, S. Takaki, S. Suejima, R. Uemori and H. Tamehiro: ISIJ Int., 39 (1999) 176. https://doi.org/10.2355/isijinternational.39.176
  10. D. T. Holzer, B. A. Pint and I. G. Wright: J. Nucl. Mater., 283 (2000) 1306.
  11. S. S. Wang, D. L. Peng, L. Chang and X. D. Hui: Mater. Design, 50 (2013) 174. https://doi.org/10.1016/j.matdes.2013.01.072
  12. L. L. Hsiung: Microscopy: Science, Technology, Applications and Education, A. Mendez-Vilas and J. Diaz (Eds.), Lawrence Livermore National Laboratory, U.S.A. (2010) 1811.
  13. Q. Tang, S. Ukai, N. Oono, S. Hayashi, B. Leng, Y. Sungino, W. Han and T. Okuda: Mater. Trans., 53 (2012) 645. https://doi.org/10.2320/matertrans.M2011251