DOI QR코드

DOI QR Code

The Fabrication of Cobalt Nanopowder by Sonochemical Polyol Synthesis of Cobalt Hydroxide and Magnetic Separation Method

수산화코발트의 초음파 폴리올 합성과 자성 선별법을 이용한 코발트 나노 분말의 제조

  • Byun, Jong Min (Department of Materials Science and Engineering, Hanyang University) ;
  • Choi, Myoung Hwan (Department of Materials Science and Engineering, Hanyang University) ;
  • Shim, Chang Min (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Ji Young (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
  • 변종민 (한양대학교 신소재공학과) ;
  • 최명환 (한양대학교 신소재공학과) ;
  • 심창민 (한양대학교 신소재공학과) ;
  • 김지영 (한양대학교 신소재공학과) ;
  • 김영도 (한양대학교 신소재공학과)
  • Received : 2015.01.23
  • Accepted : 2015.02.09
  • Published : 2015.02.28

Abstract

In this study, cobalt nanopowder is fabricated by sonochemical polyol synthesis and magnetic separation method. First, sonochemical polyol synthesis is carried out at $220^{\circ}C$ for up to 120 minutes in diethylene glycol ($C_4H_{10}O_3$). As a result, when sonochemical polyol synthesis is performed for 50 minutes, most of the cobalt precursor ($Co(OH)_2$) is reduced to spherical cobalt nanopowder of approximately 100 nm. In particular, aggregation and growth of cobalt particles are effectively suppressed as compared to common polyol synthesis. Furthermore, in order to obtain finer cobalt nanopowder, magnetic separation method using magnetic property of cobalt is introduced at an early reduction stage of sonochemical polyol synthesis when cobalt and cobalt precursor coexist. Finally, spherical cobalt nanopowder having an average particle size of 22 nm is successfully separated.

Keywords

References

  1. K. Mandel, L. Kruger and C. Schimpf: Int. J. Refract. Met. Hard Mater., 42 (2014) 200. https://doi.org/10.1016/j.ijrmhm.2013.09.006
  2. L. Yang, X. Liu, T. Goto, S. Yin and T. Sato: Funct. Mater. Lett., 5 (2012) 1260018. https://doi.org/10.1142/S1793604712600181
  3. M. Salavati-Niasari, F. Davar, M. Mazaheri and M. Shaterian: J Magn. Magn. Mater., 320 (2009) 575.
  4. C. J. Choi, X. L. Dong, J. H. Yu, J. H. Kim and B. K. Kim: J. Korean Powder Metall. Inst., 11 (2004) 16 (Korean). https://doi.org/10.4150/KPMI.2004.11.1.016
  5. Z. H. Wang, C. J. Choi, B. K. Kim, J. C. Kim and Z. D. Zhang: J. alloy. Comp., 351 (2003) 319. https://doi.org/10.1016/S0925-8388(02)01072-1
  6. H. Yang, C. Shen, N. Song, Y. Wang, T. Yang, H. Gao and Z. Cheng: Nanotechnology, 21 (2010) 375602. https://doi.org/10.1088/0957-4484/21/37/375602
  7. A. R. Tao, S. Habas and P. Yang: Small, 4 (2008) 310. https://doi.org/10.1002/smll.200701295
  8. Y. Xia, Y. Xiong, B. K. Lim and S. E. Skrabalak: Angew. Chem. Int. Ed., 48 (2009) 60. https://doi.org/10.1002/anie.200802248
  9. D. Dobos: Electrochemical Data, Elsevier, Amsterdam, (1975).
  10. G. Milazzo and S. Caroli: Tables of Standard Electrode Potentials, Wiley, Chichester (1978).
  11. D. Larcher, G. Sudant, R. Patrice and J.-M. Tarascon: Chem. Matter., 15 (2003) 3543. https://doi.org/10.1021/cm030048m
  12. P. Saravanan, T. A. Jose, P. J. Thomas and G. U. Kulkarni: Bull. Mater. Sci., 24 (2001) 515. https://doi.org/10.1007/BF02706724
  13. R. Abu-much and A. Gedanken: Chem. Eur. J., 14 (2008) 10115. https://doi.org/10.1002/chem.200801469
  14. K. Suslick: Science, 247 (1990) 1439. https://doi.org/10.1126/science.247.4949.1439