DOI QR코드

DOI QR Code

Kinetic Spray 공정으로 제조된 탄탈륨 코팅층의 열처리 분위기에 따른 미세조직 및 물성

Effect of Heat Treatment Environment on the Microstructure and Properties of Kinetic Sprayed Tantalum Coating Layer

  • 이지혜 (국립 안동대학교 신소재공학부) ;
  • 김형준 (포항산업과학연구원) ;
  • 이기안 (국립 안동대학교 신소재공학부)
  • 투고 : 2015.01.21
  • 심사 : 2015.02.09
  • 발행 : 2015.02.28

초록

The effect of heat treatment environment on the microstructure and properties of tantalum coating layer manufactured by kinetic spraying was examined. Heat treatments are conducted for one hour at $800^{\circ}C$, $900^{\circ}C$, and $1000^{\circ}C$ in two different environments of vacuum and Ar gas. Evaluation of microstructure and physical properties are conducted. High density ${\alpha}$-tantalum single phase coating layer with a porosity of 0.04% and hardness of 550 Hv can be obtained. As heat treatment temperature increases, porosity identically decreases regardless of heat treatment environment (vacuum and Ar gas). Hardness of heat treated coating layer especially in Ar gas environment deceases from 550 Hv to 490 Hv with increasing heat treatment temperature. That in vacuum environment deceases from 550 Hv to 530 Hv. The boundary between particles became vague as heat treatment temperature increases. Oxygen distribution of tantalum coating layer is minute after heat treatment in vacuum environment than Ar gas environment.

키워드

참고문헌

  1. C. Deng, S. F. Liu, J. L. Ji, X. B. Hao, Z. Q. Zhang and Q. Liu: J. Mater. Process. Technol., 214 (2014) 462. https://doi.org/10.1016/j.jmatprotec.2013.09.026
  2. M. Bischof, S. Mayer, H. Leitner, H. Clemens, P. Staron, E. Geiger, A. Voiticek and W. Knabl: Int. J. Refract. Met. Hard Mater., 24 (2006) 437. https://doi.org/10.1016/j.ijrmhm.2005.08.001
  3. S. H. Jang, J. C. Choi, S. W. Choi and I. H. Oh: J. Korean Powder Metall. Inst., 18 (2008) 181 (Korean).
  4. V. B. Voitovich, V. A. Lavrenko, V. M. Adejev and E. I. Golovko: Oxid. Met., 43 (1995) 509. https://doi.org/10.1007/BF01046896
  5. T. Kjem: Bergvesen og Mettallurgi, 6 (1963) 23.
  6. A. Parapin, V. Kosarev, S. Klinkov, A. Alkimov and A. Fomin: Cold Spray Technology, Elsevier (2001) 49.
  7. T. H. V. Steenkiste: Key Eng. Mater., 197 (2001) 59. https://doi.org/10.4028/www.scientific.net/KEM.197.59
  8. H. J. Kim, C. Lee and Y. G. Kweon: J. KWJS., 20 (2006) 459 (Korean).
  9. J. Voyer, T. Stoltenhoff and H. Kreye: 2003 International Thermal Spray Conference, ASM International, Ohio, (2003) 71.
  10. R. C. McCone: 2003 International Thermal Spray Conference, ASM International, U.S.A May, (2003) 63.
  11. T. Van Steenkiste and D. W. Gorkiewicz: J. Therm. Spray Technol., 13 (2004) 265. https://doi.org/10.1361/10599630419418
  12. H. Koivuluoto, J. Nakki and P. Vuoristo: J. Therm. Spray Technol., 18 (2009) 75. https://doi.org/10.1007/s11666-008-9281-2
  13. H. Koivuluoto, M. Honkanen and P. Vuoristo: Surf. Coat. Technol., 204 (2010) 2353. https://doi.org/10.1016/j.surfcoat.2010.01.001
  14. B. C. Choi, D. Y. Park, H. J. Kim, I. H. Oh and K. A. Lee: J. Korean Powder Metall. Inst., 18 (2011) 552 (Korean). https://doi.org/10.4150/KPMI.2011.18.6.552
  15. J. S. Yu, H. J. Kim, I. H. Oh and K. A. Lee: J. Korean Powder Metall. Inst., 19 (2012) 110 (Korean). https://doi.org/10.4150/KPMI.2012.19.2.110
  16. T. Stoltenhoff, C. Borchers, F. Gartner and H. Kreye: Surf. Coat. Technol, 200 (2006) 4947. https://doi.org/10.1016/j.surfcoat.2005.05.011
  17. M. Grujicic, J. R. Saylor, D. E. Beasley, W. S. DeRosset and D. Helfritch: Appl. Surf. Sci., 219 (2003) 211. https://doi.org/10.1016/S0169-4332(03)00643-3
  18. W.-Y. Li, C.-J. Li and H. Liao: j. Therm. Spray Technol., 15 (2006) 206. https://doi.org/10.1361/105996306X108066
  19. M. G. Jeon, H. J. Kim and K. A. Lee: J. Korean Powder Metall. Inst., 21 (2014) 349 (Korean). https://doi.org/10.4150/KPMI.2014.21.5.349
  20. M. G. Jeon, M. J. Lee, H. J. Kim and K. A. Lee: J. Korean Powder Metall. Inst., 21 (2014) 229 (Korean). https://doi.org/10.4150/KPMI.2014.21.3.229