DOI QR코드

DOI QR Code

반응성 액상 소결법으로 제조한 다공성 Mg3Sb2계 화합물의 열전물성

Thermoelectric Properties of Porous Mg3Sb2 Based Compounds Fabricated by Reactive Liquid Phase Sintering

  • 장경욱 (한서대학교 신소재공학과) ;
  • 김인기 (한서대학교 신소재공학과) ;
  • 김일호 (한국교통대학교 신소재공학과)
  • Jang, Kyung-Wook (Department of Materials Science and Engineering, Hanseo University) ;
  • Kim, In-Ki (Department of Materials Science and Engineering, Hanseo University) ;
  • Kim, Il-Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
  • 투고 : 2014.12.17
  • 심사 : 2015.01.05
  • 발행 : 2015.02.27

초록

The porous $Mg_3Sb_2$ based compounds with 60~70% of relative density were prepared by powder compaction at room temperature and reactive liquid phase sintering at 1023 K for 4hrs. The stoichiometric $Mg_3Sb_2$ compounds were synthesized from elemental Sb and Mg powder in the mixing range of 61~63 at% Mg. The increased scattering effect due to the micro-pores reduced the mobility of the charge carrier and the phonon, which caused the electrical conductivity and the thermal conductivity to decrease, respectively. But the scattering effect was greater for the electrical conductivity than for the thermal conductivity. Excess Mg alloyed in the $Mg_3Sb_2$ compounds decreased the electrical conductivity, but had no effect on the thermal conductivity. On the other hand, the large increase of the Seebeck coefficient was the result of a decrease in the charge carrier density due to the excess Mg. Dimensionless figure of merit of the porous $Mg_3Sb_2$ compound reached a maximum value of 0.28 at 61 at% Mg. The obtained value was similar to that of $Mg_3Sb_2$ compounds having little pores.

키워드

참고문헌

  1. G. Chen, G. Dresselhaus, M. S. Dresselhaus, J. P. Fleurial and T. Caillat, Int. Mater. Rev., 48(1), 45 (2003). https://doi.org/10.1179/095066003225010182
  2. C. Wood, Rep. Prog. Phys., 51(4), 459 (1988). https://doi.org/10.1088/0034-4885/51/4/001
  3. J. de Boor, D. S. Kim, X. Ao, M. Becker, N. F. Hinsche, I. Mertig, P. Zahn, and V. Schmidt, Appl. Phys. A, 107(4), 789 (2012). https://doi.org/10.1007/s00339-012-6879-5
  4. J. Tang, H. Wang, D. H. lee, M. Fardy, Z. Huo, T. P. Russel, and P. Yang, Nano Lett., 10(10), 4279 (2010). https://doi.org/10.1021/nl102931z
  5. Goldsmid, J. Electronic Mat., 39(9), 1987 (2010). https://doi.org/10.1007/s11664-009-1036-4
  6. Goldsmid, Materials, 2(3), 903 (2009). https://doi.org/10.3390/ma2030903
  7. G. J. Snyder and E. S. Toberer, Nat. Mater., 7(2), 105 (2008). https://doi.org/10.1038/nmat2090
  8. T. Kajikawa, N. Kimura, T. Yokoyama, Proceedings of the 22nd International Conference on Thermoelectrics (LaGrande Motte, France, 2003), p. 305.
  9. C. L. Condron, S. M. Kauzlarich, F. Gascoin and G. J. Snyder, J. Solid State Chem., 179(8), 2252 (2006). https://doi.org/10.1016/j.jssc.2006.01.034
  10. F. Ahmadpour, T. Kolodiazhnyi and Y. Mozharivskyj, J. Solid State Chem., 180(9), 2420 (2007). https://doi.org/10.1016/j.jssc.2007.06.011
  11. H. X. Xin, X. Y. Qin, C. J. Song, K. X. Zhang and J. Jang, J. Phys D: Appl. Phys, 42(16), 165403 (2009). https://doi.org/10.1088/0022-3727/42/16/165403
  12. V. Ponnambalam and D. T. Morelli, J. Elect. Mat., 42(7), 1307 (2013). https://doi.org/10.1007/s11664-012-2417-7
  13. A. Bhardwaj and D. K. Mirsa, RSC Adv., 4(65), 34552 (2014). https://doi.org/10.1039/C4RA04889J
  14. H. Okamoto and J. Phase Equilib. Diffus., 31(6), 574 (2010). https://doi.org/10.1007/s11669-010-9784-7
  15. I. K. Kim, K. W. Jang and H. J. Oh, J. korean crytal. Growth Cryst. Technol., 24(8), 176 (2012).
  16. H. X. Xin, X. Y. Qin, X. G. Zhu and Y. Liu, J. Phys. D: Appl. Phys., 39, 375 (2006). https://doi.org/10.1088/0022-3727/39/2/020
  17. M. Martinez-Ripoll, A. Hasse and G. Brauer, Acta Cryst., B30, 2006 (1974).
  18. H. Lee, D. Vashaee, D. Z. Wang, M. Dresselhaus, Z. F. Ren, and G. Chen, J. Appl. Phys., 107(9), 094308 (2010). https://doi.org/10.1063/1.3388076
  19. T. M. Tritt, Recent Trends in Thermoelectric Materials Research I, p.10, Academic Press, Sandiego, USA (2001).
  20. P. Pichanusakorn and P. R. Bandarua, Appl. Phys. Lett., 94(22), 223108 (2009). https://doi.org/10.1063/1.3147186